From Stress to Synapse: The Neuronal Atrophy Pathway to Mood Dysregulation
Abstract
:1. Introduction
1.1. Prevalence and Impact of Mood Disorders
1.2. Reevaluating the Neurotransmitter Dysregulation Hypothesis and Its Limitations
1.3. Treatment-Resistant Depression: New Approaches and Neuroplasticity
1.4. Emergence of the Neuronal Atrophy Hypothesis
1.5. Exploring Neuronal Atrophy in Mood Disorders
2. Neuroanatomical Alterations in Mood Disorders: Structural and Functional Perspectives
2.1. Historical Perspectives on Structural Brain Changes in Mood Disorders
2.2. Neuroimaging and Post-Mortem Evidence of Neuronal Atrophy
2.3. Thalamus and Mood Disorders
2.4. Basal Ganglia and Reward Processing in Depression
2.5. Orbitofrontal Cortex and Impulse Control Dysfunctions
2.6. Cerebellum and Mood Regulation
2.7. Corpus Callosum and Interhemispheric Communication
3. The Neuronal Atrophy Hypothesis: Structural and Functional Impacts of Neuronal Atrophy in Mood Disorders
3.1. Structural Manifestations in Neurons
3.2. Intersecting Neurobiological Models in Mood Disorders
4. Molecular Mechanisms of Neuronal Atrophy in Mood Disorders
4.1. Neurotrophic Factors and Signaling Pathways
4.2. HPA Axis Variability and Cortisol Dysregulation
4.3. IL-33/ST2 Pathway in Neuroinflammation and Mood Disorders
4.4. Microglial Activation and Synaptic Pruning in Mood Disorders
4.5. Mitochondrial Dysfunction and Synaptic Integrity
- PI3K/Akt/mTOR pathway: facilitates neuronal survival and synaptic plasticity by promoting dendritic branching and spine formation.
- PLCγ pathway activates calcium-dependent mechanisms, including ER Ca2+ release and CaMKII/CaMKIV. These mechanisms phosphorylate CREB to regulate gene expression, promoting synaptic remodeling and long-term potentiation (LTP).
- The Ras/Raf/ERK/MEK pathway regulates the gene activity necessary for synaptic maintenance, long-term potentiation, learning, and memory.
5. Integrative Models
6. Therapeutic Implications
6.1. Conventional Pharmacological Treatments for Mood Disorders
6.2. Alternative Pharmacological Approaches for Treatment-Resistant Depression (TRD)
6.3. Anti-Inflammatory Agents: A Novel Approach to Mood Disorders
6.4. Mitochondrial Dysfunction and Metabolic Approaches to Depression
6.5. Future Directions: Biomarker-Guided Personalized Psychiatry
7. Challenges and Limitations
8. Methodological Framework for Longitudinal and Integrative Research
8.1. Longitudinal Neuroimaging Studies
8.2. Biomarkers of Neuronal Atrophy
8.3. Genetic and Epigenetic Contributions
8.4. Experimental Models for Mechanistic Validation
8.5. Computational and Predictive Modeling
8.6. Translating Research into Precision Medicine
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, A.J.; Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Ashbaugh, C.; Erskine, H.E.; Charlson, F.J.; Degenhardt, L.; Scott, J.G.; McGrath, J.J.; et al. Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Hu, S.; Ng, C.H.; Mann, J.J. Editorial: Linking Treatment Target Identification to Biological Mechanisms Underlying Mood Disorders—Volume II. Front. Psychiatry 2024, 15, 1385955. [Google Scholar] [CrossRef]
- Datta, S.; Suryadevara, U.; Cheong, J. Mood Disorders. Continuum Lifelong Learn. Neurol. 2021, 27, 1712–1737. [Google Scholar] [CrossRef]
- Van Der Watt, A.S.J.; Odendaal, W.; Louw, K.; Seedat, S. Distant Mood Monitoring for Depressive and Bipolar Disorders: A Systematic Review. BMC Psychiatry 2020, 20, 383. [Google Scholar] [CrossRef]
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major Depressive Disorder. Nat. Rev. Dis. Primers 2023, 9, 44. [Google Scholar] [CrossRef]
- Rhebergen, D.; Graham, R. The Re-Labelling of Dysthymic Disorder to Persistent Depressive Disorder in DSM-5: Old Wine in New Bottles? Curr. Opin. Psychiatry 2014, 27, 27–31. [Google Scholar] [CrossRef]
- Goes, F.S. Diagnosis and Management of Bipolar Disorders. BMJ 2023, 381, e073591. [Google Scholar] [CrossRef]
- Nierenberg, A.A.; Agustini, B.; Köhler-Forsberg, O.; Cusin, C.; Katz, D.; Sylvia, L.G.; Peters, A.; Berk, M. Diagnosis and Treatment of Bipolar Disorder: A Review. JAMA 2023, 330, 1370–1380. [Google Scholar] [CrossRef]
- Conradi, H.J.; Ormel, J.; De Jonge, P. Presence of Individual (Residual) Symptoms during Depressive Episodes and Periods of Remission: A 3-Year Prospective Study. Psychol. Med. 2011, 41, 1165–1174. [Google Scholar] [CrossRef]
- Gaynes, B.N.; Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Balasubramani, G.K.; Spencer, D.C.; Petersen, T.; Klinkman, M.; Warden, D.; Nicholas, L.; et al. Major Depression Symptoms in Primary Care and Psychiatric Care Settings: A Cross-Sectional Analysis. Ann. Fam. Med. 2007, 5, 126–134. [Google Scholar] [CrossRef]
- Ghanean, H.; Ceniti, A.K.; Kennedy, S.H. Fatigue in Patients with Major Depressive Disorder: Prevalence, Burden and Pharmacological Approaches to Management. CNS Drugs 2018, 32, 65–74. [Google Scholar] [CrossRef]
- Papadimitriou, G.N.; Dikeos, D.G.; Daskalopoulou, E.G.; Soldatos, C.R. Co-Occurrence of Disturbed Sleep and Appetite Loss Differentiates between Unipolar and Bipolar Depressive Episodes. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2002, 26, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Knowles, R.; McCarthy-Jones, S.; Rowse, G. Grandiose Delusions: A Review and Theoretical Integration of Cognitive and Affective Perspectives. Clin. Psychol. Rev. 2011, 31, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.R.; McClung, C.A. Bipolar Disorder. Curr. Opin. Neurobiol. 2023, 83, 102801. [Google Scholar] [CrossRef] [PubMed]
- Vrabie, M.; Marinescu, V.; Talaşman, A.; Tăutu, O.; Drima, E.; Micluţia, I. Cognitive Impairment in Manic Bipolar Patients: Important, Understated, Significant Aspects. Ann. Gen. Psychiatry 2015, 14, 41. [Google Scholar] [CrossRef]
- Wessa, M.; Perlini, C.; Brambilla, P. Neuropsychological Underpinnings of the Dynamics of Bipolar Disorder. Epidemiol. Psychiatr. Sci. 2015, 24, 479–483. [Google Scholar] [CrossRef]
- Baldessarini, R.J.; Vázquez, G.H.; Tondo, L. Bipolar Depression: A Major Unsolved Challenge. Int. J. Bipolar Disord. 2020, 8, 1. [Google Scholar] [CrossRef]
- Cordner, Z.A.; MacKinnon, D.F.; DePaulo, J.R. The Care of Patients With Complex Mood Disorders. Focus 2020, 18, 129–138. [Google Scholar] [CrossRef]
- Voineskos, D.; Daskalakis, Z.J.; Blumberger, D.M. Management of Treatment-Resistant Depression: Challenges and Strategies. Neuropsychiatr. Dis. Treat. 2020, 16, 221–234. [Google Scholar] [CrossRef]
- Jonas, B.S.; Brody, D.; Roper, M.; Narrow, W.E. Prevalence of Mood Disorders in a National Sample of Young American Adults. Soc. Psychiatry Psychiatr. Epidemiol. 2003, 38, 618–624. [Google Scholar] [CrossRef]
- Kieling, C.; Buchweitz, C.; Caye, A.; Silvani, J.; Ameis, S.H.; Brunoni, A.R.; Cost, K.T.; Courtney, D.B.; Georgiades, K.; Merikangas, K.R.; et al. Worldwide Prevalence and Disability From Mental Disorders Across Childhood and Adolescence: Evidence From the Global Burden of Disease Study. JAMA Psychiatry 2024, 81, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Waraich, P.; Goldner, E.M.; Somers, J.M.; Hsu, L. Prevalence and Incidence Studies of Mood Disorders: A Systematic Review of the Literature. Can. J. Psychiatry 2004, 49, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Steele, C. Book Review: Key Competencies in Brief Dynamic Psychotherapy: Clinical Practice beyond the Manual. Trans. Anal. J. 2005, 35, 376–377. [Google Scholar] [CrossRef]
- Collishaw, S.; Maughan, B.; Goodman, R.; Pickles, A. Time Trends in Adolescent Mental Health. J. Child Psychol. Psychiatry Allied Discip. 2004, 45, 1350–1362. [Google Scholar] [CrossRef]
- Jensen, C.M.; Steinhausen, H.-C. Time Trends in Lifetime Incidence Rates of First-Time Diagnosed Bipolar and Depressive Disorders Across 16 Years in Danish Psychiatric Hospitals: A Nationwide Study. J. Clin. Psychiatry 2016, 77, e1570–e1575. [Google Scholar] [CrossRef]
- Holtmann, M.; Duketis, E.; Poustka, L.; Zepf, F.D.; Poustka, F.; Bölte, S. Bipolar Disorder in Children and Adolescents in Germany: National Trends in the Rates of Inpatients, 2000–2007. Bipolar Disord. 2010, 12, 155–163. [Google Scholar] [CrossRef]
- Twenge, J.M.; Cooper, A.B.; Joiner, T.E.; Duffy, M.E.; Binau, S.G. Age, Period, and Cohort Trends in Mood Disorder Indicators and Suicide-Related Outcomes in a Nationally Representative Dataset, 2005–2017. J. Abnorm. Psychol. 2019, 128, 185–199. [Google Scholar] [CrossRef]
- Forlenza, O.V.; Valiengo, L.; Stella, F. Mood Disorders in the Elderly: Prevalence, Functional Impact, and Management Challenges. Neuropsychiatr. Dis. Treat. 2016, 12, 2105–2114. [Google Scholar] [CrossRef]
- Giebel, C.; Corcoran, R.; Goodall, M.; Campbell, N.; Gabbay, M.; Daras, K.; Barr, B.; Wilson, T.; Kullu, C. Do People Living in Disadvantaged Circumstances Receive Different Mental Health Treatments than Those from Less Disadvantaged Backgrounds? BMC Public Health 2020, 20, 651. [Google Scholar] [CrossRef]
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in Mental Disorders and Global Disease Burden Implications: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2015, 72, 334–341. [Google Scholar] [CrossRef]
- Gao, K.; Wang, Z.; Chen, J.; Kemp, D.E.; Chan, P.K.; Conroy, C.M.; Serrano, M.B.; Ganocy, S.J.; Calabrese, J.R. Should an Assessment of Axis I Comorbidity Be Included in the Initial Diagnostic Assessment of Mood Disorders? Role of QIDS-16-SR Total Score in Predicting Number of Axis I Comorbidity. J. Affect. Disord. 2013, 148, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Ittasakul, P.; Thaipisuttikul, P.; Waleeprakhon, P.; Wisajun, P.; Jullagate, S. Psychiatric Comorbidities in Patients with Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2014, 10, 2097. [Google Scholar] [CrossRef]
- Merikangas, K.R.; Zhang, H.; Avenevoli, S.; Acharyya, S.; Neuenschwander, M.; Angst, J. Longitudinal Trajectories of Depression and Anxiety in a Prospective Community Study: The Zurich Cohort Study. Arch. Gen. Psychiatry 2003, 60, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, G. Treatment Resistant Depression: What Are the Options? BMJ 2018, 363, k5354. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The Serotonin Theory of Depression: A Systematic Umbrella Review of the Evidence. Mol. Psychiatry 2023, 28, 3243–3256. [Google Scholar] [CrossRef]
- Albert, P.R.; Blier, P. Does Serotonin Matter in Depression? J. Psychiatry Neurosci. 2023, 48, E400–E403. [Google Scholar] [CrossRef]
- Rihmer, Z.; Döme, P.; Katona, C.L.E. Serotonin and Depression—A Riposte to Moncrieff et al. (2022). Neuropsychopharmacol. Hung 2022, 24, 120–125. [Google Scholar]
- Jauhar, S.; Arnone, D.; Baldwin, D.S.; Bloomfield, M.; Browning, M.; Cleare, A.J.; Corlett, P.; Deakin, J.F.W.; Erritzoe, D.; Fu, C.; et al. A Leaky Umbrella Has Little Value: Evidence Clearly Indicates the Serotonin System Is Implicated in Depression. Mol. Psychiatry 2023, 28, 3149–3152. [Google Scholar] [CrossRef]
- Jauhar, S.; Cowen, P.J.; Browning, M. Fifty Years on: Serotonin and Depression. J. Psychopharmacol. 2023, 37, 237–241. [Google Scholar] [CrossRef]
- Bremshey, S.; Groß, J.; Renken, K.; Masseck, O.A. The Role of Serotonin in Depression—A Historical Roundup and Future Directions. J. Neurochem. 2024, 168, 1751–1779. [Google Scholar] [CrossRef]
- Ahmed, D.R. Letter to the Editor Concerning: “The Serotonin Theory of Depression: A Systematic Umbrella Review of the Evidence.”. Mol. Psychiatry 2024, 29, 205. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, J.P.R. Serotonin and Depression—An Alternative Interpretation of the Data in Moncrieff et al. Mol. Psychiatry 2023, 28, 3158–3159. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, N.; Giovenzana, M.; Misztak, P.; Mingardi, J.; Musazzi, L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int. J. Mol. Sci. 2024, 25, 6521. [Google Scholar] [CrossRef] [PubMed]
- Doan, J.; Defaix, C.; Mendez-David, I.; Gardier, A.M.; Colle, R.; Corruble, E.; McGowan, J.C.; David, D.J.; Guilloux, J.; Tritschler, L. Intrahippocampal Injection of a Selective Blocker of NMDA Receptors Containing the GluN2B Subunit, Ro25-6981, Increases Glutamate Neurotransmission and Induces Antidepressant-like Effects. Fundamemntal Clin. Pharmacol. 2023, 37, 1119–1128. [Google Scholar] [CrossRef]
- Gandy, H.M.; Hollis, F.; Hernandez, C.M.; McQuail, J.A. Aging or Chronic Stress Impairs Working Memory and Modulates GABA and Glutamate Gene Expression in Prelimbic Cortex. Front. Aging Neurosci. 2024, 15, 1306496. [Google Scholar] [CrossRef]
- Piot, L.; Heroven, C.; Bossi, S.; Zamith, J.; Malinauskas, T.; Johnson, C.; Wennagel, D.; Stroebel, D.; Charrier, C.; Aricescu, A.R.; et al. GluD1 Binds GABA and Controls Inhibitory Plasticity. Science 2023, 382, 1389–1394. [Google Scholar] [CrossRef]
- Blier, P.; El Mansari, M. Serotonin and beyond: Therapeutics for Major Depression. Philos. Trans. R. Soc. B 2013, 368, 20120536. [Google Scholar] [CrossRef]
- Coppen, A. The Biochemistry of Affective Disorders. Br. J. Psychiatry 1967, 113, 1237–1264. [Google Scholar] [CrossRef]
- Hillhouse, T.M.; Porter, J.H. A Brief History of the Development of Antidepressant Drugs: From Monoamines to Glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef]
- Gianni, G.; Pasqualetti, M. Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem. Neurosci. 2023, 14, 4093–4104. [Google Scholar] [CrossRef] [PubMed]
- Vecera, C.M.; Courtes, A.C.; Jones, G.; Soares, J.C.; Machado-Vieira, R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals 2023, 16, 1572. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, T.-E.; Lee, S.-H.; Koo, J.W. The Role of Glutamate Underlying Treatment-Resistant Depression. Clin. Psychopharmacol. Neurosci. 2023, 21, 429–446. [Google Scholar] [CrossRef]
- Cooper, T.; Seigler, M.D.; Stahl, S. Rapid Onset Brain Plasticity at Novel Pharmacologic Targets Hypothetically Drives Innovations for Rapid Onset Antidepressant Actions. J. Psychopharmacol. 2023, 37, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Thase, M.E. Have Effective Antidepressants Finally Arrived? Developments in Major Depressive Disorder Therapy. J. Clin. Psychiatry 2023, 84, 48388. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Alsuwaidan, M.; Baune, B.T.; Berk, M.; Demyttenaere, K.; Goldberg, J.F.; Gorwood, P.; Ho, R.; Kasper, S.; Kennedy, S.H.; et al. Treatment-resistant Depression: Definition, Prevalence, Detection, Management, and Investigational Interventions. World Psychiatry 2023, 22, 394–412. [Google Scholar] [CrossRef]
- Samuels, B.A.; Leonardo, E.D.; Gadient, R.; Williams, A.; Zhou, J.; David, D.J.; Gardier, A.M.; Wong, E.H.F.; Hen, R. Modeling Treatment-Resistant Depression. Neuropharmacology 2011, 61, 408–413. [Google Scholar] [CrossRef]
- Akil, H.; Gordon, J.; Hen, R.; Javitch, J.; Mayberg, H.; McEwen, B.; Meaney, M.J.; Nestler, E.J. Treatment Resistant Depression: A Multi-Scale, Systems Biology Approach. Neurosci. Biobehav. Rev. 2018, 84, 272–288. [Google Scholar] [CrossRef]
- Coplan, J.D.; Gopinath, S.; Abdallah, C.G.; Berry, B.R. A Neurobiological Hypothesis of Treatment-Resistant Depression €“ Mechanisms for Selective Serotonin Reuptake Inhibitor Non-Efficacy. Front. Behav. Neurosci. 2014, 8, 189. [Google Scholar] [CrossRef]
- Chai, Y.; Sheline, Y.I.; Oathes, D.J.; Balderston, N.L.; Rao, H.; Yu, M. Functional Connectomics in Depression: Insights into Therapies. Trends Cogn. Sci. 2023, 27, 814–832. [Google Scholar] [CrossRef]
- Price, R.B.; Duman, R. Neuroplasticity in Cognitive and Psychological Mechanisms of Depression: An Integrative Model. Mol. Psychiatry 2020, 25, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z.; Saxena, K.; Lateef, A.; Khan, S.; Blassingame, J.; Shah, A.A. Treatment-Resistant Depression and Medications. Psychiatr. Ann. 2024, 54, e177–e181. [Google Scholar] [CrossRef]
- d’Andrea, G.; Pettorruso, M.; Rhee, T.G.; Di Lorenzo, G.; McIntyre, R.S.; Martinotti, G. Exploring the Potential of a Bridge Therapy: Synergistic Approach Integrating Intravenous Ketamine and Intranasal Esketamine for Treatment-Resistant Depression. Acta Psychiatr. Scand. 2023, 148, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Idlett-Ali, S.L.; Salazar, C.A.; Bell, M.S.; Short, E.B.; Rowland, N.C. Neuromodulation for Treatment-Resistant Depression: Functional Network Targets Contributing to Antidepressive Outcomes. Front. Hum. Neurosci. 2023, 17, 1125074. [Google Scholar] [CrossRef]
- Caraci, F.; Calabrese, F.; Molteni, R.; Bartova, L.; Dold, M.; Leggio, G.M.; Fabbri, C.; Mendlewicz, J.; Racagni, G.; Kasper, S.; et al. International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-Resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets. Pharmacol. Rev. 2018, 70, 475–504. [Google Scholar] [CrossRef]
- Parker, G. Treatment-resistant Depression Invites Persistent Reflection. World Psychiatry 2023, 22, 414–415. [Google Scholar] [CrossRef]
- Zanos, P.; Brown, K.A.; Georgiou, P.; Yuan, P.; Zarate, C.A.; Thompson, S.M.; Gould, T.D. NMDA Receptor Activation-Dependent Antidepressant-Relevant Behavioral and Synaptic Actions of Ketamine. J. Neurosci. 2023, 43, 1038–1050. [Google Scholar] [CrossRef]
- Guilloux, J.-P.; Nguyen, T.M.L.; Gardier, A.M. La Kétamine : Un Neuropsychotrope Au Mécanisme d’action Innovant. Biol. Aujourd’hui 2023, 217, 133–144. [Google Scholar] [CrossRef]
- Fogaça, M.V.; Daher, F.; Picciotto, M.R. Effects of Ketamine on GABAergic and Glutamatergic Activity in the mPFC: Biphasic Recruitment of GABA Function in Antidepressant-like Responses. Neuropsychopharmacology 2024, 50, 673–684. [Google Scholar]
- Raval, N.R.; Johansen, A.; Donovan, L.L.; Ros, N.F.; Ozenne, B.; Hansen, H.D.; Knudsen, G.M. A Single Dose of Psilocybin Increases Synaptic Density and Decreases 5-HT2A Receptor Density in the Pig Brain. Int. J. Mol. Sci. 2021, 22, 835. [Google Scholar] [CrossRef]
- Morales-Garcia, J.A.; Calleja-Conde, J.; Lopez-Moreno, J.A.; Alonso-Gil, S.; Sanz-SanCristobal, M.; Riba, J.; Perez-Castillo, A. N,N-Dimethyltryptamine Compound Found in the Hallucinogenic Tea Ayahuasca, Regulates Adult Neurogenesis in Vitro and in Vivo. Transl. Psychiatry 2020, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.C.; Olson, D.E.; Preller, K.H.; Roth, B.L. The Neural Basis of Psychedelic Action. Nat. Neurosci. 2022, 25, 1407–1419. [Google Scholar] [CrossRef]
- Ly, C.; Greb, A.C.; Cameron, L.P.; Wong, J.M.; Barragan, E.V.; Wilson, P.C.; Burbach, K.F.; Zarandi, S.S.; Sood, A.; Paddy, M.R.; et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 2018, 23, 3170–3182. [Google Scholar] [CrossRef]
- Shao, L.-X.; Liao, C.; Gregg, I.; Davoudian, P.A.; Savalia, N.K.; Delagarza, K.; Kwan, A.C. Psilocybin Induces Rapid and Persistent Growth of Dendritic Spines in Frontal Cortex in Vivo. Neuron 2021, 109, 2535–2544.e4. [Google Scholar] [CrossRef]
- Sotille, R.; Singh, H.; Weisman, A.; Vida, T. Unraveling the Mysteries of Mental Illness With Psilocybin. Cureus 2022, 14, e25414. [Google Scholar] [CrossRef] [PubMed]
- Daws, R.E.; Timmermann, C.; Giribaldi, B.; Sexton, J.D.; Wall, M.B.; Erritzoe, D.; Roseman, L.; Nutt, D.; Carhart-Harris, R. Increased Global Integration in the Brain after Psilocybin Therapy for Depression. Nat. Med. 2022, 28, 844–851. [Google Scholar] [CrossRef]
- Gattuso, J.J.; Perkins, D.; Ruffell, S.; Lawrence, A.J.; Hoyer, D.; Jacobson, L.H.; Timmermann, C.; Castle, D.; Rossell, S.L.; Downey, L.A.; et al. Default Mode Network Modulation by Psychedelics: A Systematic Review. Int. J. Neuropsychopharmacol. 2023, 26, 155–188. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.W.; Hendricks, P.S.; Barrett, F.S.; Griffiths, R.R. Classic Psychedelics: An Integrative Review of Epidemiology, Therapeutics, Mystical Experience, and Brain Network Function. Pharmacol. Ther. 2019, 197, 83–102. [Google Scholar] [CrossRef]
- Yu, Z.; Burback, L.; Winkler, O.; Xu, L.; Dennett, L.; Vermetten, E.; Greenshaw, A.; Li, X.-M.; Milne, M.; Wang, F.; et al. Alterations in Brain Network Connectivity and Subjective Experience Induced by Psychedelics: A Scoping Review. Front. Psychiatry 2024, 15, 1386321. [Google Scholar] [CrossRef]
- Watford, T.; Masood, N. Psilocybin, an Effective Treatment for Major Depressive Disorder in Adults—A Systematic Review. Clin. Psychopharmacol. Neurosci. 2024, 22, 2–12. [Google Scholar] [CrossRef]
- Carhart-Harris, R.; Giribaldi, B.; Watts, R.; Baker-Jones, M.; Murphy-Beiner, A.; Murphy, R.; Martell, J.; Blemings, A.; Erritzoe, D.; Nutt, D.J. Trial of Psilocybin versus Escitalopram for Depression. N. Engl. J. Med. 2021, 384, 1402–1411. [Google Scholar] [CrossRef]
- Kargbo, R.B. Perceptual Modifying Compounds and Their Potential Therapeutic Applications in Neuropsychiatric Disorders. ACS Med. Chem. Lett. 2024, 15, 12–14. [Google Scholar] [CrossRef]
- Duan, W.; Cao, D.; Wang, S.; Cheng, J. Serotonin 2A Receptor (5-HT2A R) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem. Rev. 2024, 124, 124–163. [Google Scholar] [CrossRef]
- Erritzoe, D.; Barba, T.; Greenway, K.T.; Murphy, R.; Martell, J.; Giribaldi, B.; Timmermann, C.; Murphy-Beiner, A.; Jones, M.B.; Nutt, D.; et al. Effect of Psilocybin versus Escitalopram on Depression Symptom Severity in Patients with Moderate-to-Severe Major Depressive Disorder: Observational 6-Month Follow-up of a Phase 2, Double-Blind, Randomised, Controlled Trial. eClinicalMedicine 2024, 76, 102799. [Google Scholar] [CrossRef]
- Higa, G.S.V.; Viana, F.J.C.; Francis-Oliveira, J.; Cruvinel, E.; Franchin, T.S.; Marcourakis, T.; Ulrich, H.; De Pasquale, R. Serotonergic Neuromodulation of Synaptic Plasticity. Neuropharmacology 2024, 257, 110036. [Google Scholar] [CrossRef]
- Banasr, M.; Dwyer, J.M.; Duman, R.S. Cell Atrophy and Loss in Depression: Reversal by Antidepressant Treatment. Curr. Opin. Cell Biol. 2011, 23, 730–737. [Google Scholar] [CrossRef]
- Duman, R.S.; Monteggia, L.M. A Neurotrophic Model for Stress-Related Mood Disorders. Biol. Psychiatry 2006, 59, 1116–1127. [Google Scholar] [CrossRef]
- Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017, 2017, 6871089. [Google Scholar] [CrossRef]
- McLaughlin, L. Serotonin and the Brain: Exploring the 5-HT System’s Role in Depression. Cornell Undergrad. Res. J. 2023, 2, 54–74. [Google Scholar] [CrossRef]
- Trifu, S.C.; Trifu, A.C.; Aluaş, E.; Tătaru, M.A.; Costea, R.V. Brain Changes in Depression. Rom. J. Morphol. Embryol. 2020, 61, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.J.; McEwen, B.S. Social Influences on Neuroplasticity: Stress and Interventions to Promote Well-Being. Nat. Neurosci. 2012, 15, 689–695. [Google Scholar] [CrossRef]
- Duman, R.S. Neuronal Damage and Protection in the Pathophysiology and Treatment of Psychiatric Illness: Stress and Depression. Dialogues Clin. Neurosci. 2009, 11, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Monreal, M.R.; Pérez, J.Q.; Bonilla, M.E.P.; Pérez-Escalera, M.; Lazalde, A.R. Theoretical Calculation of NMDA Receptor Desensitization and Intracellular Calcium Determination through Simulation. Int. J. Sci. Res. Arch. 2024, 11, 295–303. [Google Scholar] [CrossRef]
- Dionysopoulou, S.; Wikstrom, P.; Walum, E.; Georgakis, S.; Thermos, K. Investigation of the Effects of a Novel NOX2 Inhibitor, GLX7013170, against Glutamate Excitotoxicity and Diabetes Insults in the Retina. Pharmaceuticals 2024, 17, 393. [Google Scholar] [CrossRef]
- Fan, G.; Liu, M.; Liu, J.; Huang, Y. The Initiator of Neuroexcitotoxicity and Ferroptosis in Ischemic Stroke: Glutamate Accumulation. Front. Mol. Neurosci. 2023, 16, 1113081. [Google Scholar] [CrossRef]
- Kang, H.J.; Voleti, B.; Hajszan, T.; Rajkowska, G.; Stockmeier, C.A.; Licznerski, P.; Lepack, A.; Majik, M.S.; Jeong, L.S.; Banasr, M.; et al. Decreased Expression of Synapse-Related Genes and Loss of Synapses in Major Depressive Disorder. Nat. Med. 2012, 18, 1413–1417. [Google Scholar] [CrossRef]
- Rajkowska, G.; Miguel-Hidalgo, J.J.; Wei, J.; Dilley, G.; Pittman, S.D.; Meltzer, H.Y.; Overholser, J.C.; Roth, B.L.; Stockmeier, C.A. Morphometric Evidence for Neuronal and Glial Prefrontal Cell Pathology in Major Depression. Biol. Psychiatry 1999, 45, 1085–1098. [Google Scholar] [CrossRef]
- Craven, A.R.; Dwyer, G.; Ersland, L.; Kazimierczak, K.; Noeske, R.; Sandøy, L.B.; Johnsen, E.; Hugdahl, K. GABA, Glutamatergic Dynamics and BOLD Contrast Assessed Concurrently Using Functional MRS during a Cognitive Task. NMR Biomed. 2024, 37, e5065. [Google Scholar] [CrossRef]
- Hassamal, S. Chronic Stress, Neuroinflammation, and Depression: An Overview of Pathophysiological Mechanisms and Emerging Anti-Inflammatories. Front. Psychiatry 2023, 14, 1130989. [Google Scholar] [CrossRef]
- Kokkosis, A.G.; Madeira, M.M.; Hage, Z.; Valais, K.; Koliatsis, D.; Resutov, E.; Tsirka, S.E. Chronic Psychosocial Stress Triggers Microglial-/Macrophage-induced Inflammatory Responses Leading to Neuronal Dysfunction and Depressive-related Behavior. Glia 2024, 72, 111–132. [Google Scholar] [CrossRef]
- Chiu, Y.-J.; Lin, C.-H.; Lin, C.-Y.; Yang, P.-N.; Lo, Y.-S.; Chen, Y.-C.; Chen, C.-M.; Wu, Y.-R.; Yao, C.-F.; Chang, K.-H.; et al. Investigating Therapeutic Effects of Indole Derivatives Targeting Inflammation and Oxidative Stress in Neurotoxin-Induced Cell and Mouse Models of Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 2642. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef]
- Smausz, R.; Neill, J.; Gigg, J. Neural Mechanisms Underlying Psilocybin’s Therapeutic Potential—the Need for Preclinical in Vivo Electrophysiology. J. Psychopharmacol. 2022, 36, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Santa, C.; Manadas, B.; Monteiro, P. Chronic Stress Alters Synaptic Inhibition/Excitation Balance of Pyramidal Neurons But Not PV Interneurons in the Infralimbic and Prelimbic Cortices of C57BL/6J Mice. eNeuro 2024, 11, ENEURO.0053-24.2024. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Bano, N.; Ahamad, S.; John, U.; Dar, N.J.; Bhat, S.A. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis. 2024, 15, 125–144. [Google Scholar] [CrossRef]
- Drevets, W.C.; Price, J.L.; Furey, M.L. Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Struct. Funct. 2008, 213, 93–118. [Google Scholar] [CrossRef]
- Price, J.L.; Drevets, W.C. Neurocircuitry of Mood Disorders. Neuropsychopharmacology 2010, 35, 192–216. [Google Scholar] [CrossRef]
- Savitz, J.B.; Price, J.L.; Drevets, W.C. Neuropathological and Neuromorphometric Abnormalities in Bipolar Disorder: View from the Medial Prefrontal Cortical Network. Neurosci. Biobehav. Rev. 2014, 42, 132–147. [Google Scholar] [CrossRef]
- Chandley, M.; Ordway, G. Chapter 3. Noradrenergic Dysfunction in Depression and Suicide. In The Neurobiological Basis of Suicide; Dwivedi, Y., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2012. [Google Scholar]
- Furczyk, K.; Schutová, B.; Michel, T.M.; Thome, J.; Büttner, A. The Neurobiology of Suicide—A Review of Post-Mortem Studies. J. Mol. Psychiatry 2013, 1, 2. [Google Scholar] [CrossRef]
- Harrison, P.J. Postmortem Studies in Schizophrenia. Dialogues Clin. Neurosci. 2000, 2, 349–357. [Google Scholar] [CrossRef]
- Miguel-Hidalgo, J.J.; Rajkowska, G. Morphological Brain Changes in Depression: Can Antidepressants Reverse Them? CNS Drugs 2002, 16, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Jogia, J.; Yoshimura, R. Editorial: Recent Developments in Neuroimaging in Mood Disorders. Front. Psychiatry 2024, 15, 1371347. [Google Scholar] [CrossRef]
- Yen, C.; Lin, C.-L.; Chiang, M.-C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, 13, 1472. [Google Scholar] [CrossRef]
- Pandya, M.; Altinay, M.; Malone, D.A.; Anand, A. Where in the Brain Is Depression? Curr. Psychiatry Rep. 2012, 14, 634–642. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, W.; Sweeney, J.A.; Jia, Z.; Gong, Q. Brain Structure Alterations in Depression: Psychoradiological Evidence. CNS Neurosci. Ther. 2018, 24, 994–1003. [Google Scholar] [CrossRef]
- Guo, Y.-B.; Gao, W.-J.; Long, Z.-L.; Cao, W.-F.; Cui, D.; Guo, Y.-X.; Jiao, Q.; Qiu, J.-F.; Su, L.-Y.; Lu, G.-M. Shared and Specific Patterns of Structural and Functional Thalamo-Frontal Disturbances in Manic and Euthymic Pediatric Bipolar Disorder. Brain Imaging Behav. 2021, 15, 2671–2680. [Google Scholar] [CrossRef]
- Lu, F.; Chen, Y.; Cui, Q.; Guo, Y.; Pang, Y.; Luo, W.; Yu, Y.; Chen, J.; Gao, J.; Sheng, W.; et al. Shared and Distinct Patterns of Dynamic Functional Connectivity Variability of Thalamo-Cortical Circuit in Bipolar Depression and Major Depressive Disorder. Cereb. Cortex 2023, 33, 6681–6692. [Google Scholar] [CrossRef]
- Fateh, A.A.; Cui, Q.; Smahi, A.; Yang, Y.; Aburas, A.; Chen, H. Aberrant Thalamic Functional Connectivity for the Differential Diagnosis of Bipolar Disorder and Major Depressive Disorder. In Proceedings of the 2021 11th International Conference on Biomedical Engineering and Technology, Tokyo, Japan, 17 March 2021; pp. 20–26. [Google Scholar]
- Chibaatar, E.; Watanabe, K.; Okamoto, N.; Orkhonselenge, N.; Natsuyama, T.; Hayakawa, G.; Ikenouchi, A.; Kakeda, S.; Yoshimura, R. Volumetric Assessment of Individual Thalamic Nuclei in Patients with Drug-Naïve, First-Episode Major Depressive Disorder. Front. Psychiatry 2023, 14, 1151551. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Y.; Liu, Y.; Li, D.; Liang, X.; Chen, Y.; Zhang, H.; Guo, Y.; Lu, R.; Wang, J.; et al. Abnormal Dynamic Functional Connectivity of Thalamic Subregions in Patients with First-Episode, Drug-Naïve Major Depressive Disorder. Front. Psychiatry 2023, 14, 1152332. [Google Scholar] [CrossRef]
- Hagen, J.; Ramkiran, S.; Schnellbächer, G.J.; Rajkumar, R.; Collee, M.; Khudeish, N.; Veselinović, T.; Shah, N.J.; Neuner, I. Phenomena of Hypo- and Hyperconnectivity in Basal Ganglia-Thalamo-Cortical Circuits Linked to Major Depression: A 7T fMRI Study. Mol. Psychiatry 2025, 30, 158–167. [Google Scholar] [CrossRef]
- Shibukawa, S.; Kan, H.; Honda, S.; Wada, M.; Tarumi, R.; Tsugawa, S.; Tobari, Y.; Maikusa, N.; Mimura, M.; Uchida, H.; et al. Alterations in Subcortical Magnetic Susceptibility and Disease-Specific Relationship with Brain Volume in Major Depressive Disorder and Schizophrenia. Transl. Psychiatry 2024, 14, 164. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Nordengen, K.; Rokicki, J.; Shadrin, A.A.; Rahman, Z.; Smeland, O.B.; Jaholkowski, P.P.; Parker, N.; Parekh, P.; O’Connell, K.S.; et al. Unveiling the Genetic Landscape of Basal Ganglia: Implications for Common Brain Disorders. medRxiv 2023, 2023, 23293206. [Google Scholar]
- Moningka, H.; El-Deredy, W.; Bentall, R.P.; Mason, L. Misperceiving Momentum: Computational Mechanisms of Biased Striatal Reward Prediction Errors in Bipolar Disorder. Biol. Psychiatry Glob. Open Sci. 2024, 4, 100330. [Google Scholar] [CrossRef]
- Zhuang, Q.; Qiao, L.; Xu, L.; Yao, S.; Chen, S.; Zheng, X.; Li, J.; Fu, M.; Li, K.; Vatansever, D.; et al. The Right Inferior Frontal Gyrus as Pivotal Node and Effective Regulator of the Basal Ganglia-Thalamocortical Response Inhibition Circuit. Psychoradiology 2023, 3, kkad016. [Google Scholar] [CrossRef]
- Franz, M.; Kebets, V.; Berg, X.; Georgiadis, F.; Burrer, A.; Brakowski, J.; Kaiser, S.; Seifritz, E.; Homan, P.; Walton, E.; et al. Orbitofrontal Thickness and Network Associations as Transdiagnostic Signature of Negative Symptoms along the Bipolar-Schizophrenia Spectrum. medRxiv 2024, 2024, 24311172. [Google Scholar]
- Gerstner, N.; Fröhlich, A.S.; Matosin, N.; Gagliardi, M.; Cruceanu, C.; Ködel, M.; Rex-Haffner, M.; Tu, X.; Mostafavi, S.; Ziller, M.J.; et al. Contrasting Genetic Predisposition and Diagnosis in Psychiatric Disorders: A Multi-Omic Single-Nucleus Analysis of the Human Orbitofrontal Cortex. Sci. Adv. 2025, 11, eadq2290. [Google Scholar] [CrossRef]
- Kuan, H.-Y.; Chang, C. The Role of the Orbitofrontal Cortex in the Regulation of Fear Coping Strategies. J. Physiol. Investig. 2024, 67, 233–241. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, F.; Wang, X.; Xia, J.; Yuan, G.; Zheng, S.; Zhong, M.; Zhu, X. Cognitive Inflexibility Is Linked to Abnormal Frontoparietal-related Activation and Connectivity in Obsessive-compulsive Disorder. Hum. Brain Mapp. 2023, 44, 5460–5470. [Google Scholar] [CrossRef]
- Fulton, S.L.; Bendl, J.; Gameiro-Ros, I.; Fullard, J.F.; Al-Kachak, A.; Lepack, A.E.; Stewart, A.F.; Singh, S.; Poller, W.C.; Bastle, R.M.; et al. ZBTB7A Regulates MDD-Specific Chromatin Signatures and Astrocyte-Mediated Stress Vulnerability in Orbitofrontal Cortex. bioRxiv 2023, 2023, 539425. [Google Scholar]
- O’Donovan, S.; Ali, S.; Deng, W.; Patti, G.; Wang, J.; Eladawi, M.; Imami, A. Shared and Unique Transcriptional Changes in the Orbitofrontal Cortex in Psychiatric Disorders and Suicide. Translation 2024, 12, e1–e10. [Google Scholar] [CrossRef]
- Li, Y.-T.; Zhang, C.; Han, J.-C.; Shang, Y.-X.; Chen, Z.-H.; Cui, G.-B.; Wang, W. Neuroimaging Features of Cognitive Impairments in Schizophrenia and Major Depressive Disorder. Ther. Adv. Psychopharmacol. 2024, 14, 20451253241243290. [Google Scholar] [CrossRef]
- Stanca, S.; Rossetti, M.; Bongioanni, P. The Cerebellum’s Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023, 13, 1113. [Google Scholar] [CrossRef]
- Alasmar, Z.; Chakravarty, M.M.; Penhune, V.; Steele, C.J. Patterns of Cerebellar-Cortical Structural Covariance Mirror Anatomical Connectivity of Sensorimotor and Cognitive Networks. Hum. Brain Mapp. 2023, 46, e70079. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Gallea, C.; Valabregue, R.; Krishnan, S.; Kesavadas, C.; Thomas, B.; James, P.; Menon, R.; Kishore, A. Cerebellar and Basal Ganglia Structural Connections in Humans: Effect of Aging and Relation with Memory and Learning. Front. Aging Neurosci. 2023, 15, 1019239. [Google Scholar] [CrossRef]
- Hudgins, S.N.; Curtin, A.; Tracy, J.; Ayaz, H. Impaired Cortico-Thalamo-Cerebellar Integration Across Schizophrenia, Bipolar II, and Attention Deficit Hyperactivity Disorder Patients Suggests Potential Neural Signatures for Psychiatric Illness. Res. Sq. 2024, rs. 3, rs-4145883. [Google Scholar]
- Albadawi, E.A. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024, 16, e67378. [Google Scholar] [CrossRef]
- De La Puente, A.I.; Calderón, P.d.S.; Moreno, M.G.; Fernandez, R.B.; Da Silva, M.V. Neuropsychiatric Symptoms Related to Agenesis of the Corpus Callosum. A Case Report. Eur. Psychiatr. 2023, 66, S892. [Google Scholar] [CrossRef]
- Kaļva, K.; Zdanovskis, N.; Šneidere, K.; Kostiks, A.; Karelis, G.; Platkājis, A.; Stepens, A. Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment. Diagnostics 2023, 13, 3679. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, X.; Li, Y.; Shen, H.; Wan, Y.; Ping, L.; Yu, H.; Cheng, Y.; Xu, X.; Cui, J.; et al. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis. J. Integr. Neurosci. 2024, 23, 170. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, R.R.; Gadewar, S.P.; Shetty, A.; Ba Gari, I.; Haddad, E.; Javid, S.; Ramesh, A.; Nourollahimoghadam, E.; Zhu, A.H.; De Leeuw, C.; et al. The Genetic Architecture of the Human Corpus Callosum and Its Subregions. bioRxiv 2024, 2024, 603147. [Google Scholar]
- De Fátima De Paiva Abreu, D.; Leandro De Almeida, N.; Antonio Dos Santos, N. Executive Functions’ Alterations In Obsessive-Compulsive Disorder: A Systematic Literature Review. PsicolArgum 2024, 42, 714–731. [Google Scholar] [CrossRef]
- Benson, K.L.; Winkelman, J.W.; Gönenç, A. Disrupted White Matter Integrity in Primary Insomnia and Major Depressive Disorder: Relationships to Sleep Quality and Depression Severity. J. Sleep Res. 2023, 32, e13913. [Google Scholar] [CrossRef]
- Marsden, W.N. Synaptic Plasticity in Depression: Molecular, Cellular and Functional Correlates. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 43, 168–184. [Google Scholar] [CrossRef]
- Datta, D.; Arnsten, A. Loss of Prefrontal Cortical Higher Cognition with Uncontrollable Stress: Molecular Mechanisms, Changes with Age, and Relevance to Treatment. Brain Sci. 2019, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Helm, K.; Viol, K.; Weiger, T.M.; Tass, P.A.; Grefkes, C.; Del Monte, D.; Schiepek, G. Neuronal Connectivity in Major Depressive Disorder: A Systematic Review. Neuropsychiatr. Dis. Treat. 2018, 14, 2715–2737. [Google Scholar] [CrossRef]
- Woo, E.; Sansing, L.H.; Arnsten, A.F.T.; Datta, D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. Chronic Stress 2021, 5, 247054702110292. [Google Scholar] [CrossRef]
- Bearden, C.E.; Hoffman, K.M.; Cannon, T.D. The Neuropsychology and Neuroanatomy of Bipolar Affective Disorder: A Critical Review. Bipolar Disord. 2001, 3, 106–150. [Google Scholar] [CrossRef]
- Depp, C.A.; Dev, S.; Eyler, L.T. Bipolar Depression and Cognitive Impairment. Psychiatr. Clin. N. Am. 2016, 39, 95–109. [Google Scholar] [CrossRef]
- Nortje, G.; Stein, D.J.; Radua, J.; Mataix-Cols, D.; Horn, N. Systematic Review and Voxel-Based Meta-Analysis of Diffusion Tensor Imaging Studies in Bipolar Disorder. J. Affect. Disord. 2013, 150, 192–200. [Google Scholar] [CrossRef]
- Rădulescu, I.; Drăgoi, A.; Trifu, S.; Cristea, M. Neuroplasticity and Depression: Rewiring the Brain’s Networks through Pharmacological Therapy (Review). Exp. Ther. Med. 2021, 22, 1131. [Google Scholar] [CrossRef]
- Friedman, N.P.; Robbins, T.W. The Role of Prefrontal Cortex in Cognitive Control and Executive Function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, D.A.; Roberts, A.C. Prefrontal Cortex and Depression. Neuropsychopharmacology 2022, 47, 225–246. [Google Scholar] [CrossRef]
- Anand, K.; Dhikav, V. Hippocampus in Health and Disease: An Overview. Ann. Indian Acad. Neurol. 2012, 15, 239. [Google Scholar] [CrossRef] [PubMed]
- Canales-Rodríguez, E.J.; Pomarol-Clotet, E.; Radua, J.; Sarró, S.; Alonso-Lana, S.; Del Mar Bonnín, C.; Goikolea, J.M.; Maristany, T.; García-Álvarez, R.; Vieta, E.; et al. Structural Abnormalities in Bipolar Euthymia: A Multicontrast Molecular Diffusion Imaging Study. Biol. Psychiatry 2014, 76, 239–248. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, M.C.; Yucel, K.; Nazarov, A.; MacQueen, G.M. A Meta-Analysis Examining Clinical Predictors of Hippocampal Volume in Patients with Major Depressive Disorder. J. Psychiatry Neurosci. 2009, 34, 41–54. [Google Scholar]
- Nolan, M.; Roman, E.; Nasa, A.; Levins, K.J.; O’Hanlon, E.; O’Keane, V.; Willian Roddy, D. Hippocampal and Amygdalar Volume Changes in Major Depressive Disorder: A Targeted Review and Focus on Stress. Chronic Stress 2020, 4, 247054702094455. [Google Scholar] [CrossRef]
- Kronenberg, G.; Tebartz Van Elst, L.; Regen, F.; Deuschle, M.; Heuser, I.; Colla, M. Reduced Amygdala Volume in Newly Admitted Psychiatric In-Patients with Unipolar Major Depression. J. Psychiatr. Res. 2009, 43, 1112–1117. [Google Scholar] [CrossRef]
- Jesulola, E.; Micalos, P.; Baguley, I.J. Understanding the Pathophysiology of Depression: From Monoamines to the Neurogenesis Hypothesis Model—Are We There Yet? Behav. Brain Res. 2018, 341, 79–90. [Google Scholar] [CrossRef]
- Stockmeier, C.A. Involvement of Serotonin in Depression: Evidence from Postmortem and Imaging Studies of Serotonin Receptors and the Serotonin Transporter. J. Psychiatr. Res. 2003, 37, 357–373. [Google Scholar] [CrossRef]
- Li, Y.-F. A Hypothesis of Monoamine (5-HT)—Glutamate/GABA Long Neural Circuit: Aiming for Fast-Onset Antidepressant Discovery. Pharmacol. Ther. 2020, 208, 107494. [Google Scholar] [CrossRef]
- Pitsillou, E.; Bresnehan, S.M.; Kagarakis, E.A.; Wijoyo, S.J.; Liang, J.; Hung, A.; Karagiannis, T.C. The Cellular and Molecular Basis of Major Depressive Disorder: Towards a Unified Model for Understanding Clinical Depression. Mol. Biol. Rep. 2020, 47, 753–770. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, L.-P.; Wang, Q.; Wu, Q.; Hu, H.-H.; Zhang, M.; Fang, Y.-Y.; Zhang, J.; Li, S.-J.; Xiong, W.-C.; et al. Astrocyte-Derived ATP Modulates Depressive-like Behaviors. Nat. Med. 2013, 19, 773–777. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, D.; Li, Y.; Gu, S.; Dong, J.; Ma, X.; Xu, S.; Wang, F.; Huang, J.H. Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals 2022, 15, 1203. [Google Scholar] [CrossRef]
- Wang, Q.; Jie, W.; Liu, J.; Yang, J.; Gao, T. An Astroglial Basis of Major Depressive Disorder? An Overview. Glia 2017, 65, 1227–1250. [Google Scholar] [CrossRef]
- Jones, G.H.; Vecera, C.M.; Pinjari, O.F.; Machado-Vieira, R. Inflammatory Signaling Mechanisms in Bipolar Disorder. J. Biomed. Sci. 2021, 28, 45. [Google Scholar] [CrossRef] [PubMed]
- Khairova, R.A.; Machado-Vieira, R.; Du, J.; Manji, H.K. A Potential Role for Pro-Inflammatory Cytokines in Regulating Synaptic Plasticity in Major Depressive Disorder. Int. J. Neuropsychopharm. 2009, 12, 561–578. [Google Scholar] [CrossRef] [PubMed]
- Panaccione, I.; Spalletta, G.; Sani, G. Neuroinflammation and Excitatory Symptoms in Bipolar Disorder. Neuroimmunol. Neuroinflammation 2015, 2, 215–227. [Google Scholar] [CrossRef]
- SayuriYamagata, A.; Brietzke, E.; Rosenblat, J.D.; Kakar, R.; McIntyre, R.S. Medical Comorbidity in Bipolar Disorder: The Link with Metabolic-Inflammatory Systems. J. Affect. Disord. 2017, 211, 99–106. [Google Scholar] [CrossRef]
- Castrén, E.; Kojima, M. Brain-Derived Neurotrophic Factor in Mood Disorders and Antidepressant Treatments. Neurobiol. Dis. 2017, 97, 119–126. [Google Scholar] [CrossRef]
- Castrén, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef]
- Park, H.; Poo, M. Neurotrophin Regulation of Neural Circuit Development and Function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Nagappan, G.; Lu, Y. BDNF and Synaptic Plasticity, Cognitive Function, and Dysfunction. In Neurotrophic Factors; Lewin, G.R., Carter, B.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 220, pp. 223–250. ISBN 978-3-642-45105-8. [Google Scholar]
- Autry, A.E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Aghajanian, G.K. Synaptic Dysfunction in Depression: Potential Therapeutic Targets. Science 2012, 338, 68–72. [Google Scholar] [CrossRef]
- Castren, E.; Voikar, V.; Rantamaki, T. Role of Neurotrophic Factors in Depression. Curr. Opin. Pharmacol. 2007, 7, 18–21. [Google Scholar] [CrossRef]
- Krishnan, V.; Nestler, E.J. The Molecular Neurobiology of Depression. Nature 2008, 455, 894–902. [Google Scholar] [CrossRef]
- Jemni, M.; Zaman, R.; Carrick, F.R.; Clarke, N.D.; Marina, M.; Bottoms, L.; Matharoo, J.S.; Ramsbottom, R.; Hoffman, N.; Groves, S.J.; et al. Exercise Improves Depression through Positive Modulation of Brain-Derived Neurotrophic Factor (BDNF). A Review Based on 100 Manuscripts over 20 Years. Front. Physiol. 2023, 14, 1102526. [Google Scholar] [CrossRef]
- Pedro Do Valle Varela, J.; Roschy Da Silva Costa, V.; Sobrinho Vaz, N.; Henrique De Melo Almeida, T.; Silva De Oliveira Bernardes, G.; Rodrigues De Almeida, L.; Luiza Fonseca Maia Caetano, A.; De Oliveira Figueiredo, B. Impact of prolonged use of antidepressants on neuroplasticity. Health Soc. 2024, 4, 317–328. [Google Scholar] [CrossRef]
- Yoshimura, R.; Okamoto, N.; Chibaatar, E.; Natsuyama, T.; Ikenouchi, A. The Serum Brain-Derived Neurotrophic Factor Increases in Serotonin Reuptake Inhibitor Responders Patients with First-Episode, Drug-Naïve Major Depression. Biomedicines 2023, 11, 584. [Google Scholar] [CrossRef]
- Pariante, C.M.; Lightman, S.L. The HPA Axis in Major Depression: Classical Theories and New Developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Stetler, C.; Miller, G.E. Depression and Hypothalamic-Pituitary-Adrenal Activation: A Quantitative Summary of Four Decades of Research. Psychosom. Med. 2011, 73, 114–126. [Google Scholar] [CrossRef]
- Binder, E.B. The Role of FKBP5, a Co-Chaperone of the Glucocorticoid Receptor in the Pathogenesis and Therapy of Affective and Anxiety Disorders. Psychoneuroendocrinology 2009, 34, S186–S195. [Google Scholar] [CrossRef] [PubMed]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-Specific FKBP5 DNA Demethylation Mediates Gene–Childhood Trauma Interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef]
- Dronse, J.; Ohndorf, A.; Richter, N.; Bischof, G.N.; Fassbender, R.; Behfar, Q.; Gramespacher, H.; Dillen, K.; Jacobs, H.I.L.; Kukolja, J.; et al. Serum Cortisol Is Negatively Related to Hippocampal Volume, Brain Structure, and Memory Performance in Healthy Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1154112. [Google Scholar] [CrossRef]
- McEwen, B.S. Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.K.; Engert, V.; Valk, S.L.; Singer, T.; Puhlmann, L.M.C. Mapping Pathways to Neuronal Atrophy in Healthy, Mid-Aged Adults: From Chronic Stress to Systemic Inflammation to Neurodegeneration? Brain Behav. Immun. Health 2024, 38, 100781. [Google Scholar] [CrossRef]
- Sharan, P.; Chitra, V. Hypothalamic-Pituitary-Adrenal (HPA) Axis: Unveiling the Potential Mechanisms Involved in Stress-Induced Alzheimer’s Disease and Depression. Cureus 2024, 16, e67595. [Google Scholar] [CrossRef]
- Souza, L.W.; Bieger, A.; Borelli, W.V.; De Bastiani, M.A.; Negrini, G.B.; DuBois, J.M.; Zimmer, E.R.; Lab, Z.N. High CSF Cortisol Levels Are Associated with Frontal Lobe and Hippocampal Atrophy across Patients on the Alzheimer’s Disease Spectrum. Alzheimer’s Amp Dement. 2023, 19, e065940. [Google Scholar] [CrossRef]
- Wang, G.; Cao, L.; Li, S.; Zhang, M.; Li, Y.; Duan, J.; Li, Y.; Hu, Z.; Wu, J.; Li, T.; et al. Corticosterone Impairs Hippocampal Neurogenesis and Behaviors through P21-Mediated ROS Accumulation. Biomolecules 2024, 14, 268. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Glucocorticoids and Hippocampal Atrophy in Neuropsychiatric Disorders. Arch. Gen. Psychiatry 2000, 57, 925–935. [Google Scholar] [CrossRef]
- Videbech, P.; Ravnkilde, B. Hippocampal Volume and Depression: A Meta-Analysis of MRI Studies. Am. J. Psychiatry 2004, 161, 1957–1966. [Google Scholar] [CrossRef]
- Arora, H.; Javed, B.; Kutikuppala, L.V.S.; Chaurasia, M.; Khullar, K.; Kannan, S.; Golla, V. ST2 Levels and Neurodegenerative Diseases: Is This a Significant Relation? Ann. Med. Surg. 2024, 86, 2812–2817. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, E.; Szmacinski, A.; Mami, S.; Kim, B.; Crawley, I.; Kim, J.; Kang, S. Loss of Oligodendrocyte-derived IL-33 Results in Increased Amyloid Plaque Deposition in APP/PS1 Mice. Alzheimer’s Amp Dement. 2023, 19, e077595. [Google Scholar] [CrossRef]
- Guo, S.; Qian, C.; Li, W.; Zeng, Z.; Cai, J.; Luo, Y. Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke. Neuroimmunomodulation 2023, 30, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Guo, M.; Ge, X.; Chen, F.; Lei, P. IL-33/ST2 Axis: A Potential Therapeutic Target in Neurodegenerative Diseases. Biomolecules 2023, 13, 1494. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.T.; Ames, J.M.; Ziegler, S.F.; Oberst, A. Oligodendrocyte-Derived IL-33 Functions as a Microglial Survival Factor during Neuroinvasive Flavivirus Infection. PLoS Pathog. 2023, 19, e1011350. [Google Scholar] [CrossRef]
- He, D.; Xu, H.; Zhang, H.; Tang, R.; Lan, Y.; Xing, R.; Li, S.; Christian, E.; Hou, Y.; Lorello, P.; et al. Disruption of the IL-33-ST2-AKT Signaling Axis Impairs Neurodevelopment by Inhibiting Microglial Metabolic Adaptation and Phagocytic Function. Immunity 2022, 55, 159–173.e9. [Google Scholar] [CrossRef]
- England, E.; Rees, D.G.; Scott, I.C.; Carmen, S.; Chan, D.T.Y.; Chaillan Huntington, C.E.; Houslay, K.F.; Erngren, T.; Penney, M.; Majithiya, J.B.; et al. Tozorakimab (MEDI3506): A Dual-Pharmacology Anti-IL-33 Antibody That Inhibits IL-33 Signalling via ST2 and RAGE/EGFR to Reduce Inflammation and Epithelial Dysfunction. Sci. Rep. 2023, 13, 1–15. [Google Scholar]
- Cangalaya, C.; Sun, W.; Stoyanov, S.; Dunay, I.R.; Dityatev, A. Integrity of Neural Extracellular Matrix Is Required for Microglia-mediated Synaptic Remodeling. Glia 2024, 72, 1874–1892. [Google Scholar] [CrossRef]
- Eyo, U.; Molofsky, A.V. Defining Microglial-Synapse Interactions. Science 2023, 381, 1155–1156. [Google Scholar] [CrossRef]
- Nebeling, F.C.; Poll, S.; Justus, L.C.; Steffen, J.; Keppler, K.; Mittag, M.; Fuhrmann, M. Microglial Motility Is Modulated by Neuronal Activity and Correlates with Dendritic Spine Plasticity in the Hippocampus of Awake Mice. eLife 2023, 12, e83176. [Google Scholar] [CrossRef]
- Surala, M.; Soso-Zdravkovic, L.; Munro, D.; Rifat, A.; Ouk, K.; Vida, I.; Priller, J.; Madry, C. Microglia Shape Hippocampal Networks but Are Dispensable for Pruning of Synapses during Development. Biorxiv 2023, 2023, 560092. [Google Scholar]
- Koo, J.W.; Duman, R.S. IL-1β Is an Essential Mediator of the Antineurogenic and Anhedonic Effects of Stress. Proc. Natl. Acad. Sci. USA 2008, 105, 751–756. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Cao, Y.; Yang, J. Inflammatory Signatures of Microglia in the Mouse Model of Corticosterone-Induced Depression. bioRxiv 2024, 2024, 608928. [Google Scholar]
- Schafer, D.P.; Lehrman, E.K.; Stevens, B. The “Quad-partite” Synapse: Microglia-synapse Interactions in the Developing and Mature CNS. Glia 2013, 61, 24–36. [Google Scholar] [CrossRef]
- Zhan, Y.; Paolicelli, R.C.; Sforazzini, F.; Weinhard, L.; Bolasco, G.; Pagani, F.; Vyssotski, A.L.; Bifone, A.; Gozzi, A.; Ragozzino, D.; et al. Deficient Neuron-Microglia Signaling Results in Impaired Functional Brain Connectivity and Social Behavior. Nat. Neurosci. 2014, 17, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Manji, H.; Kato, T.; Di Prospero, N.A.; Ness, S.; Beal, M.F.; Krams, M.; Chen, G. Impaired Mitochondrial Function in Psychiatric Disorders. Nat. Rev. Neurosci. 2012, 13, 293–307. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Wolkowitz, O.M.; Srihari, V.H.; Reus, V.I.; Goetzl, L.; Kapogiannis, D.; Heninger, G.R.; Mellon, S.H. Abnormal Levels of Mitochondrial Proteins in Plasma Neuronal Extracellular Vesicles in Major Depressive Disorder. Mol Psychiatry 2021, 26, 7355–7362. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; McEwen, B.S. Psychological Stress and Mitochondria: A Conceptual Framework. Psychosom. Med. 2018, 80, 126–140. [Google Scholar] [CrossRef]
- Del Dotto, V.; Musiani, F.; Baracca, A.; Solaini, G. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Int. J. Mol. Sci. 2024, 25, 2239. [Google Scholar] [CrossRef]
- Castejon-Vega, B.; Fernandez-Guerrero, I.; Myers, K.; Kataura, T.; Stefanatos, R.; Korolchuk, V.I.; Sanz, A. The Role of Respiratory Complex IV in Lifespan Length and Quality. bioRxiv 2023, 2023, 546283. [Google Scholar]
- Alamodi, M.; Dasgupta, D.; Fogarty, M.; Mantilla, C.B.; Sieck, G. Mitochondrial Fragmentation Increases with Aging in Rats. Physiology 2024, 39, 1497. [Google Scholar] [CrossRef]
- Baron, K.R.; Oviedo, S.; Krasny, S.; Zaman, M.; Aldakhlallah, R.; Bora, P.; Mathur, P.; Pfeffer, G.; Bollong, M.J.; Shutt, T.E.; et al. Pharmacologic Activation of Integrated Stress Response Kinases Inhibits Pathologic Mitochondrial Fragmentation. eLife 2025, 13, RP100541. [Google Scholar]
- Goncharov, A.G.; Tatarkina, M.A.; Lobanova, V.V.; Kozenkov, I.I.; Dzhigkaev, A.K.; Gunbin, K.V. Mitochondrial Dysfunction as a Probable Mechanism for Triggering Inflammatory Joint Diseases. Russ. J. Immunol. 2023, 26, 501–506. [Google Scholar] [CrossRef]
- Song, P.; Sun, M.; Liu, C.; Liu, J.; Lin, P.; Chen, H.; Zhou, D.; Tang, K.; Wang, A.; Jin, Y. Reactive Oxygen Species Damage Bovine Endometrial Epithelial Cells via the Cytochrome C-mPTP Pathway. Antioxidants 2023, 12, 2123. [Google Scholar] [CrossRef]
- Quarato, G.; Mari, L.; Barrows, N.J.; Yang, M.; Ruehl, S.; Chen, M.J.; Guy, C.S.; Low, J.; Chen, T.; Green, D.R. Mitophagy Restricts BAX/BAK-Independent, Parkin-Mediated Apoptosis. Sci. Adv. 2023, 9, eadg8156. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Valencia, A.P.; Begue, G.; Norman, J.E.; Fan, S.; Durbin-Johnson, B.P.; Jenner, B.N.; Campbell, M.D.; Reyes, G.; Kapahi, P.; et al. Randomized Crossover Clinical Trial of Nicotinamide Riboside and Coenzyme Q10 on Metabolic Health and Mitochondrial Bioenergetics in CKD. medRxiv 2024, 2024, 24312501. [Google Scholar]
- Ebrahimi, A.; Kamyab, A.; Hosseini, S.; Ebrahimi, S.; Ashkani-Esfahani, S. Involvement of Coenzyme Q10 in Various Neurodegenerative and Psychiatric Diseases. Biochem. Res. Int. 2023, 2023, 5510874. [Google Scholar] [CrossRef]
- Fakharaldeen, Z.A.; Al-Mudhafar, A.; Gany, S.N.; Radhi, A.N.; Hadi, N.R.; Hospital, A.-N.A.-A.A.-H. Neuroprotective effects of Coenzyme Q10 in ischemia-reperfusion injury via inflammation and oxidative stress reduction in adult male rats. J. Med. Life 2023, 16, 1534–1539. [Google Scholar] [CrossRef]
- Gromova, O.A.; Torshin, I.Y.; Gromov, A.N. Possibilities of Using Coenzyme Q10 for the Treatment of Diseases Associated with Mitochondrial Dysfunction and Chronic Inflammation. Farmakoèkonomika 2023, 16, 466–480. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; García-Martín, E.; Agúndez, J.A.G. Coenzyme Q10 and Dementia: A Systematic Review. Antioxidants 2023, 12, 533. [Google Scholar] [CrossRef]
- Majmasanaye, M.; Mehrpooya, M.; Amiri, H.; Eshraghi, A. Discovering the Potential Value of Coenzyme Q10 as an Adjuvant Treatment in Patients With Depression. J. Clin. Psychopharmacol. 2024, 44, 232–239. [Google Scholar] [CrossRef]
- Mantle, D.; Rowbottom, H.; Jones, J.; Potts, I.M.; Turton, N.; Dewsbury, M.; Lopez-Lluch, G.; Hargreaves, I.P. Energy Metabolism as a Therapeutic Target in Cancer: The Role of Coenzyme Q10. Oxygen 2024, 4, 122–138. [Google Scholar] [CrossRef]
- Mantle, D.; Hargreaves, I.P. Coenzyme Q10 and Endocrine Disorders: An Overview. Antioxidants 2023, 12, 514. [Google Scholar] [CrossRef]
- Steenberge, L.H.; Sung, A.Y.; Fan, J.; Pagliarini, D.J. Coenzyme Q4 Is a Functional Substitute for Coenzyme Q10 and Can Be Targeted to the Mitochondria. J. Biol. Chem. 2024, 300, 107269. [Google Scholar] [CrossRef]
- Cheon, Y.; Yoon, S.; Lee, J.-H.; Kim, K.; Kim, H.-J.; Hong, S.W.; Yun, Y.-R.; Shim, J.; Kim, S.-H.; Lu, B.; et al. A Novel Interaction between MFN2/Marf and MARK4/PAR-1 Is Implicated in Synaptic Defects and Mitochondrial Dysfunction. eNeuro 2023, 10, ENEURO.0409-22.2023. [Google Scholar] [CrossRef]
- Grel, H.; Woznica, D.; Ratajczak, K.; Kalwarczyk, E.; Anchimowicz, J.; Switlik, W.; Olejnik, P.; Zielonka, P.; Stobiecka, M.; Jakiela, S. Mitochondrial Dynamics in Neurodegenerative Diseases: Unraveling the Role of Fusion and Fission Processes. Int. J. Mol. Sci. 2023, 24, 13033. [Google Scholar] [CrossRef]
- Traa, A.; Keil, A.; Rudich, Z.; Zhu, S.; Van Raamsdonk, J.M. Overexpression of Mitochondrial Fusion Genes Enhances Resilience and Extends Longevity. bioRxiv 2023, 2023, 563703. [Google Scholar]
- Duman, R.S.; Li, N. A Neurotrophic Hypothesis of Depression: Role of Synaptogenesis in the Actions of NMDA Receptor Antagonists. Philos. Trans. R. Soc. B 2012, 367, 2475–2484. [Google Scholar] [CrossRef]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Rodrigues, A.J.; Silva, J.M.; Tronche, F.; Almeida, O.F.X.; Sousa, N.; Sotiropoulos, I. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration. Neural Plast. 2016, 2016, 6391686. [Google Scholar] [CrossRef]
- Peggion, C.; Calì, T.; Brini, M. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First? Antioxidants 2024, 13, 240. [Google Scholar] [CrossRef]
- Sbai, O.; Bazzani, V.; Tapaswi, S.; McHale, J.; Vascotto, C.; Perrone, L. Is Drp1 a Link between Mitochondrial Dysfunction and Inflammation in Alzheimer’s Disease? Front. Mol. Neurosci. 2023, 16, 1166879. [Google Scholar] [CrossRef]
- Komoltsev, I.G.; Gulyaeva, N.V. Brain Trauma, Glucocorticoids and Neuroinflammation: Dangerous Liaisons for the Hippocampus. Biomedicines 2022, 10, 1139. [Google Scholar] [CrossRef]
- Tsimpolis, A.; Kalafatakis, K.; Charalampopoulos, I. Recent Advances in the Crosstalk between the Brain-Derived Neurotrophic Factor and Glucocorticoids. Front. Endocrinol. 2024, 15, 1362573. [Google Scholar] [CrossRef]
- Alshaya, D.S. Genetic and Epigenetic Factors Associated with Depression: An Updated Overview. Saudi J. Biol. Sci. 2022, 29, 103311. [Google Scholar] [CrossRef]
- Lopizzo, N.; Bocchio Chiavetto, L.; Cattane, N.; Plazzotta, G.; Tarazi, F.I.; Pariante, C.M.; Riva, M.A.; Cattaneo, A. Gene—Environment Interaction in Major Depression: Focus on Experience-Dependent Biological Systems. Front. Psychiatry 2015, 6, 68. [Google Scholar] [CrossRef]
- Nabeshima, T.; Kim, H.-C. Involvement of Genetic an d Environmental Factors in the Onset of Depression. Exp. Neurobiol. 2013, 22, 235–243. [Google Scholar] [CrossRef]
- Shadrina, M.; Bondarenko, E.A.; Slominsky, P.A. Genetics Factors in Major Depression Disease. Front. Psychiatry 2018, 9, 334. [Google Scholar] [CrossRef]
- Chakrapani, S.; Eskander, N.; De Los Santos, L.A.; Omisore, B.A.; Mostafa, J.A. Neuroplasticity and the Biological Role of Brain Derived Neurotrophic Factor in the Pathophysiology and Management of Depression. Cureus 2020, 12, e11396. [Google Scholar] [CrossRef]
- Hennings, J.M.; Kohli, M.A.; Uhr, M.; Holsboer, F.; Ising, M.; Lucae, S. Polymorphisms in the BDNF and BDNFOS Genes Are Associated with Hypothalamus-Pituitary Axis Regulation in Major Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 95, 109686. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Chauhan, L.; Bhardwaj, A.; Sharma, A.; Fayaz, F.; Kumar, B.; Alhashmi, M.; AlHajri, N.; Alam, M.S.; Pottoo, F.H. Brain-Derived Neurotropic Factor in Neurodegenerative Disorders. Biomedicines 2022, 10, 1143. [Google Scholar] [CrossRef]
- DeRijk, R.H.; Van Leeuwen, N.; Klok, M.D.; Zitman, F.G. Corticosteroid Receptor-Gene Variants: Modulators of the Stress-Response and Implications for Mental Health. Eur. J. Pharmacol. 2008, 585, 492–501. [Google Scholar] [CrossRef]
- Malekpour, M.; Shekouh, D.; Safavinia, M.E.; Shiralipour, S.; Jalouli, M.; Mortezanejad, S.; Azarpira, N.; Ebrahimi, N.D. Role of FKBP5 and Its Genetic Mutations in Stress-Induced Psychiatric Disorders: An Opportunity for Drug Discovery. Front. Psychiatry 2023, 14, 1182345. [Google Scholar] [CrossRef]
- Marques, A.H.; Silverman, M.N.; Sternberg, E.M. Glucocorticoid Dysregulations and Their Clinical Correlates: From Receptors to Therapeutics. Ann. N. Y. Acad. Sci. 2009, 1179, 1–18. [Google Scholar] [CrossRef]
- Wagner, K.V.; Marinescu, D.; Hartmann, J.; Wang, X.-D.; Labermaier, C.; Scharf, S.H.; Liebl, C.; Uhr, M.; Holsboer, F.; Müller, M.B.; et al. Differences in FKBP51 Regulation Following Chronic Social Defeat Stress Correlate with Individual Stress Sensitivity: Influence of Paroxetine Treatment. Neuropsychopharmacology 2012, 37, 2797–2808. [Google Scholar] [CrossRef]
- Grezenko, H.; Ekhator, C.; Nwabugwu, N.U.; Ganga, H.; Affaf, M.; Abdelaziz, A.M.; Rehman, A.; Shehryar, A.; Abbasi, F.A.; Bellegarde, S.B.; et al. Epigenetics in Neurological and Psychiatric Disorders: A Comprehensive Review of Current Understanding and Future Perspectives. Cureus 2023, 15, e43960. [Google Scholar] [CrossRef]
- Yuan, M.; Yang, B.; Rothschild, G.; Mann, J.J.; Sanford, L.D.; Tang, X.; Huang, C.; Wang, C.; Zhang, W. Epigenetic Regulation in Major Depression and Other Stress-Related Disorders: Molecular Mechanisms, Clinical Relevance and Therapeutic Potential. Signal Transduct. Target. Ther. 2023, 8, 309. [Google Scholar] [CrossRef]
- Cassilhas, R.C.; Viana, V.A.R.; Grassmann, V.; Santos, R.T.; Santos, R.F.; Tufik, S.; Mello, M.T. The Impact of Resistance Exercise on the Cognitive Function of the Elderly. Med. Sci. Sports Exerc. 2007, 39, 1401–1407. [Google Scholar] [CrossRef]
- Coelho, F.G.d.M.; Gobbi, S.; Andreatto, C.A.A.; Corazza, D.I.; Pedroso, R.V.; Santos-Galduróz, R.F. Physical Exercise Modulates Peripheral Levels of Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review of Experimental Studies in the Elderly. Arch. Gerontol. Geriatr. 2013, 56, 10–15. [Google Scholar] [CrossRef]
- Marston, K.J.; Newton, M.J.; Brown, B.M.; Rainey-Smith, S.R.; Bird, S.; Martins, R.N.; Peiffer, J.J. Intense Resistance Exercise Increases Peripheral Brain-Derived Neurotrophic Factor. J. Sci. Med. Sport 2017, 20, 899–903. [Google Scholar] [CrossRef]
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A Meta-Analytic Review of the Effects of Exercise on Brain-Derived Neurotrophic Factor. J. Psychiatr. Res. 2015, 60, 56–64. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic Plasticity and Depression: New Insights from Stress and Rapid-Acting Antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef]
- Sharp, T.; Collins, H. Mechanisms of SSRI Therapy and Discontinuation. In Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Tartt, A.N.; Mariani, M.B.; Hen, R.; Mann, J.J.; Boldrini, M. Dysregulation of Adult Hippocampal Neuroplasticity in Major Depression: Pathogenesis and Therapeutic Implications. Mol. Psychiatry 2022, 27, 2689–2699. [Google Scholar] [CrossRef]
- Castrén, E.; Rantamäki, T. The Role of BDNF and Its Receptors in Depression and Antidepressant Drug Action: Reactivation of Developmental Plasticity. Dev. Neurobiol. 2010, 70, 289–297. [Google Scholar] [CrossRef]
- Kaagman, D.G.M.; Van Wegen, E.E.H.; Cignetti, N.; Rothermel, E.; Vanbellingen, T.; Hirsch, M.A. Effects and Mechanisms of Exercise on Brain-Derived Neurotrophic Factor (BDNF) Levels and Clinical Outcomes in People with Parkinson’s Disease: A Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 194. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.-A. Exercise Builds Brain Health: Key Roles of Growth Factor Cascades and Inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef]
- Koike, H.; Iijima, M.; Chaki, S. Involvement of the Mammalian Target of Rapamycin Signaling in the Antidepressant-like Effect of Group II Metabotropic Glutamate Receptor Antagonists. Neuropharmacology 2011, 61, 1419–1423. [Google Scholar] [CrossRef]
- Sanacora, G.; Zarate, C.A.; Krystal, J.H.; Manji, H.K. Targeting the Glutamatergic System to Develop Novel, Improved Therapeutics for Mood Disorders. Nat. Rev. Drug. Discov. 2008, 7, 426–437. [Google Scholar] [CrossRef]
- Xi, Z.-X.; Baker, D.A.; Shen, H.; Carson, D.S.; Kalivas, P.W. Group II Metabotropic Glutamate Receptors Modulate Extracellular Glutamate in the Nucleus Accumbens. J. Pharmacol. Exp. Ther. 2002, 300, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Glue, P.; Medlicott, N.J.; Harland, S.; Neehoff, S.; Anderson-Fahey, B.; Le Nedelec, M.; Gray, A.; McNaughton, N. Ketamine’s Dose-Related Effects on Anxiety Symptoms in Patients with Treatment Refractory Anxiety Disorders. J. Psychopharmacol. 2017, 31, 1302–1305. [Google Scholar] [CrossRef]
- Glue, P.; Neehoff, S.; Sabadel, A.; Broughton, L.; Le Nedelec, M.; Shadli, S.; McNaughton, N.; Medlicott, N.J. Effects of Ketamine in Patients with Treatment-Refractory Generalized Anxiety and Social Anxiety Disorders: Exploratory Double-Blind Psychoactive-Controlled Replication Study. J. Psychopharmacol. 2020, 34, 267–272. [Google Scholar] [CrossRef]
- Glue, P.; Neehoff, S.; Beaglehole, B.; Shadli, S.; McNaughton, N.; Hughes-Medlicott, N.J. Ketamine for Treatment-Resistant Major Depressive Disorder: Double-Blind Active-Controlled Crossover Study. J. Psychopharmacol. 2024, 38, 162–167. [Google Scholar] [CrossRef]
- Fond, G.; Loundou, A.; Rabu, C.; Macgregor, A.; Lançon, C.; Brittner, M.; Micoulaud-Franchi, J.-A.; Richieri, R.; Courtet, P.; Abbar, M.; et al. Ketamine Administration in Depressive Disorders: A Systematic Review and Meta-Analysis. Psychopharmacology 2014, 231, 3663–3676. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Bolstridge, M.; Day, C.M.J.; Rucker, J.; Watts, R.; Erritzoe, D.E.; Kaelen, M.; Giribaldi, B.; Bloomfield, M.; Pilling, S.; et al. Psilocybin with Psychological Support for Treatment-Resistant Depression: Six-Month Follow-Up. Psychopharmacology 2018, 235, 399–408. [Google Scholar] [CrossRef]
- Mithoefer, M.C.; Grob, C.S.; Brewerton, T.D. Novel Psychopharmacological Therapies for Psychiatric Disorders: Psilocybin and MDMA. Lancet Psychiatry 2016, 3, 481–488. [Google Scholar] [CrossRef]
- Hatzipantelis, C.J.; Olson, D.E. The Effects of Psychedelics on Neuronal Physiology. Annu. Rev. Physiol. 2024, 86, 27–47. [Google Scholar] [CrossRef]
- Amsterdam, J.D.; Kim, T.T. Relative Effectiveness of Monoamine Oxidase Inhibitor and Tricyclic Antidepressant Combination Therapy for Treatment-Resistant Depression. J. Clin. Psychopharmacol. 2019, 39, 649–652. [Google Scholar] [CrossRef]
- Kim, T.; Xu, C.; Amsterdam, J.D. Relative Effectiveness of Tricyclic Antidepressant versus Monoamine Oxidase Inhibitor Monotherapy for Treatment-Resistant Depression. J. Affect. Disord. 2019, 250, 199–203. [Google Scholar] [CrossRef]
- Lum, C.T.; Stahl, S.M. Opportunities for Reversible Inhibitors of Monoamine Oxidase-A (RIMAs) in the Treatment of Depression. CNS Spectr. 2012, 17, 107–120. [Google Scholar] [CrossRef]
- Thase, M.E. Recent Developments Pertaining to Treatment-resistant Depression: A 40-year Perspective. World Psychiatry 2023, 22, 413–414. [Google Scholar] [CrossRef]
- Thomas, S.J.; Shin, M.; McInnis, M.G.; Bostwick, J.R. Combination Therapy with Monoamine Oxidase Inhibitors and Other Antidepressants or Stimulants: Strategies for the Management of Treatment-Resistant Depression. Pharmacotherapy 2015, 35, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Tundo, A.; Filippis, R.D.; Proietti, L. Pharmacologic Approaches to Treatment Resistant Depression: Evidences and Personal Experience. World J. Psychiatry 2015, 5, 330–341. [Google Scholar] [CrossRef]
- Van den Eynde, V.; Parker, G.; Ruhé, H.G.; Birkenhäger, T.K.; Godet, L.; Shorter, E.; Gillman, P.K. On the Origins of MAOI Misconceptions: Reaffirming Their Role in Melancholic Depression. Psychopharmacol Bull 2023, 53, 35–54. [Google Scholar] [PubMed]
- Aree, T. β-Cyclodextrin Encapsulation of Nortriptyline HCl and Amitriptyline HCl: Molecular Insights from Single-Crystal X-Ray Diffraction and DFT Calculation. Int. J. Pharm. 2020, 575, 118899. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, C.A.; Breaud, A.R.; Clarke, W.A. Quantification of Tricyclic Antidepressants in Serum Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (HPLC-ESI-MS/MS). In Clinical Applications of Mass Spectrometry in Drug Analysis; Garg, U., Ed.; Springer: New York, NY, USA, 2016; Volume 1383, pp. 265–270. ISBN 978-1-4939-3251-1. [Google Scholar]
- Melanson, S.E.F.; Lewandrowski, E.L.; Griggs, D.A.; Flood, J.G. Interpreting Tricyclic Antidepressant Measurements in Urine in an Emergency Department Setting: Comparison of Two Qualitative Point-of-Care Urine Tricyclic Antidepressant Drug Immunoassays with Quantitative Serum Chromatographic Analysis. J. Anal. Toxicol. 2007, 31, 270–275. [Google Scholar] [CrossRef]
- Tarek, G.; Habib, B.; Kais, G. Tricyclic Antidepressant Intoxication; Several Complications after an Acute Poisoning by Amitriptyline and Clomipramine. J. Clin. Toxicol. 2016, 6, 2161-0495. [Google Scholar] [CrossRef]
- Vos, C.F.; Aarnoutse, R.E.; Op De Coul, M.J.M.; Spijker, J.; Groothedde-Kuyvenhoven, M.M.; Mihaescu, R.; Wessels-Basten, S.J.W.; Rovers, J.J.E.; Ter Hark, S.E.; Schene, A.H.; et al. Tricyclic Antidepressants for Major Depressive Disorder: A Comprehensive Evaluation of Current Practice in the Netherlands. BMC Psychiatry 2021, 21, 481. [Google Scholar] [CrossRef]
- Matveychuk, D.; MacKenzie, E.M.; Kumpula, D.; Song, M.-S.; Holt, A.; Kar, S.; Todd, K.G.; Wood, P.L.; Baker, G.B. Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cell. Mol. Neurobiol. 2022, 42, 225–242. [Google Scholar] [CrossRef]
- Thentu, J.B.; Bhyrapuneni, G.; Padala, N.P.; Chunduru, P.; Pantangi, H.R.; Nirogi, R. Evaluation of Monoamine Oxidase A and B Type Enzyme Occupancy Using Non-Radiolabelled Tracers in Rat Brain. Neurochem. Int. 2021, 145, 105006. [Google Scholar] [CrossRef]
- Salman, B.I.; Hassan, Y.F.; Eltoukhi, W.E.; Saraya, R.E. Quantification of Tyramine in Different Types of Food Using Novel Green Synthesis of ficus carica Quantum Dots as Fluorescent Probe. Luminescence 2022, 37, 1259–1266. [Google Scholar] [CrossRef]
- Van den Eynde, V.; Gillman, P.K.; Blackwell, B.B. The Prescriber’s Guide to the MAOI Diet-Thinking Through Tyramine Troubles. Psychopharmacol Bull 2022, 52, 73–116. [Google Scholar]
- Giménez-Palomo, A.; Chamdal, A.K.; Gottlieb, N.; Lotfaliany, M.; Jokinen, T.; Bastawy, E.M.; Adlington, K.; Benachar, N.; Dodd, S.; Pacchiarotti, I.; et al. Efficacy and Tolerability of Monoamine Oxidase Inhibitors for the Treatment of Depressive Episodes in Mood Disorders: A Systematic Review and Network Meta-analysis. Acta Psychiatr. Scand. 2024, 150, 500–515. [Google Scholar] [CrossRef]
- Stahl, S.; Van Den Eynde, V.; Godet, L.; Redhead, C.; Gillman, P.K. The Pocket Guide to Classic Monoamine Oxidase Inhibitors for Treatment-Resistant Depression. Psychiatr. Ann. 2023, 53, 347–352. [Google Scholar] [CrossRef]
- Zong, M.-M.; Zhou, Z.-Q.; Ji, M.-H.; Jia, M.; Tang, H.; Yang, J.-J. Activation of Β2-Adrenoceptor Attenuates Sepsis-Induced Hippocampus-Dependent Cognitive Impairments by Reversing Neuroinflammation and Synaptic Abnormalities. Front. Cell. Neurosci. 2019, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.V.; Rosa, J.M.C.; Kimani, N.M.; Giuliatti, S.; Dos Santos, C.B.R. The Role of Celecoxib as a Potential Inhibitor in the Treatment ofInflammatory Diseases—A Review. Curr. Med. Chem. 2022, 29, 3028–3049. [Google Scholar] [CrossRef]
- Zyryanov, S.K.; Baybulatova, E.A. Current Challenges for Therapy of Comorbid Patients: A New Look at Celecoxib. A Review. Ter. Arkhiv 2024, 96, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Choquette, D.; Bessette, L.; Sauvageau, L.C.; Ferdinand, I.; Haraoui, P.; Massicotte, F.; Pelletier, J.-P.; Raynauld, J.-P.; Rémillard, M.-A.; Sauvageau, D.; et al. FRI0084 the impact of il-6 and tnf inhibitors on hemoglobin levels: An analysis from rhumadata® clinical database and registry. Ann. Rheum. Dis. 2019, 78, 705. [Google Scholar] [CrossRef]
- Le Roux, R.; Mokotedi, L.; Fourie, S.; Manilall, A.; Gunter, S.; Millen, A.M.E. TNF-α Inhibitors Reduce Inflammation-Induced Concentric Remodelling, but Not Diastolic Dysfunction in Collagen-Induced Arthritis. Clin. Exp. Rheumatol. 2022, 40, 24–32. [Google Scholar] [CrossRef]
- Bassett, B.; Subramaniyam, S.; Fan, Y.; Varney, S.; Pan, H.; Carneiro, A.M.D.; Chung, C.Y. Minocycline Alleviates Depression-like Symptoms by Rescuing Decrease in Neurogenesis in Dorsal Hippocampus via Blocking Microglia Activation/Phagocytosis. Brain Behav. Immun. 2021, 91, 519–530. [Google Scholar] [CrossRef]
- Zhang, J.; Boska, M.; Zheng, Y.; Liu, J.; Fox, H.S.; Xiong, H. Minocycline Attenuation of Rat Corpus Callosum Abnormality Mediated by Low-Dose Lipopolysaccharide-Induced Microglia Activation. J. Neuroinflammation 2021, 18, 100. [Google Scholar] [CrossRef]
- Sebők-Tornai, A.; Csabai, D.; Szekeres-Paraczky, C.; Maglóczky, Z.; Simon, M.; Stockmeier, C.A.; Czéh, B. Ultrastructural Analysis of Synapses and Mitochondria in the Hippocampus of Depressed Patiens. Eur. Psychiatry 2024, 67, S362–S363. [Google Scholar] [CrossRef]
- Weger, M.; Alpern, D.; Cherix, A.; Ghosal, S.; Grosse, J.; Russeil, J.; Gruetter, R.; de Kloet, E.R.; Deplancke, B.; Sandi, C. Mitochondrial Gene Signature in the Prefrontal Cortex for Differential Susceptibility to Chronic Stress. Sci. Rep. 2020, 10, 18308. [Google Scholar] [CrossRef]
- Andalib, S.; Mashhadi-Mousapour, M.; Bijani, S.; Hosseini, M.-J. Coenzyme Q10 Alleviated Behavioral Dysfunction and Bioenergetic Function in an Animal Model of Depression. Neurochem. Res. 2019, 44, 1182–1191. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, R.; Meng, Y.; Zhu, L.; Li, M.; Liu, Z. Coenzyme Q10 alleviates depression-like behaviors in mice with chronic restraint stress by down-regulating the pyroptosis signaling pathway. Nan Fang Yi Ke Da Xue Xue Bao 2024, 44, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, Z.I.; Pennington, J.L.; Gutierrez, A.; Skelton, M.R. Creatine Transporter Knockout Mice (Slc6a8) Show Increases in Serotonin-Related Proteins and Are Resilient to Learned Helplessness. Behav. Brain Res. 2020, 377, 112254. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, S.; Ettaro, R.; Hoffman, M.D.; Ombach, H.J.; Brown, J.; Lynch, C.; Sheth, C.S.; Renshaw, P.F. Sex-Based Impact of Creatine Supplementation on Depressive Symptoms, Brain Serotonin and SSRI Efficacy in an Animal Model of Treatment-Resistant Depression. Int. J. Mol. Sci. 2021, 22, 8195. [Google Scholar] [CrossRef]
- De Marchi, F.; Venkatesan, S.; Saraceno, M.; Mazzini, L.; Grossini, E. Acetyl-L-Carnitine and Amyotrophic Lateral Sclerosis: Current Evidenceand Potential Use. CNS Neurol. Disord.-Drug Targets 2024, 23, 588–601. [Google Scholar] [CrossRef]
- Jamali-Raeufy, N.; Alizadeh, F.; Mehrabi, Z.; Mehrabi, S.; Goudarzi, M. Acetyl-L-Carnitine Confers Neuroprotection against Lipopolysaccharide (LPS) -Induced Neuroinflammation by Targeting TLR4/NFκB, Autophagy, Inflammation and Oxidative Stress. Metab. Brain Dis. 2021, 36, 1391–1401. [Google Scholar] [CrossRef]
- Dollish, H.K.; Tsyglakova, M.; McClung, C.A. Circadian Rhythms and Mood Disorders: Time to See the Light. Neuron 2024, 112, 25–40. [Google Scholar] [CrossRef]
- Fries, G.R.; Saldana, V.A.; Finnstein, J.; Rein, T. Molecular Pathways of Major Depressive Disorder Converge on the Synapse. Mol. Psychiatry 2023, 28, 284–297. [Google Scholar] [CrossRef]
- Marcolongo-Pereira, C.; Castro, F.C.D.A.Q.; Barcelos, R.M.; Chiepe, K.C.M.B.; Rossoni Junior, J.V.; Ambrosio, R.P.; Chiarelli-Neto, O.; Pesarico, A.P. Neurobiological Mechanisms of Mood Disorders: Stress Vulnerability and Resilience. Front. Behav. Neurosci. 2022, 16, 1006836. [Google Scholar] [CrossRef]
- Mallard, T.T.; Karlsson Linnér, R.; Grotzinger, A.D.; Sanchez-Roige, S.; Seidlitz, J.; Okbay, A.; De Vlaming, R.; Meddens, S.F.W.; Palmer, A.A.; Davis, L.K.; et al. Multivariate GWAS of Psychiatric Disorders and Their Cardinal Symptoms Reveal Two Dimensions of Cross-Cutting Genetic Liabilities. Cell Genom. 2022, 2, 100140. [Google Scholar] [CrossRef]
- Rai, S.; Griffiths, K.R.; Breukelaar, I.A.; Barreiros, A.R.; Boyce, P.; Hazell, P.; Foster, S.L.; Malhi, G.S.; Harris, A.W.F.; Korgaonkar, M.S. Common and Differential Neural Mechanisms Underlying Mood Disorders. Bipolar Disord. 2022, 24, 795–805. [Google Scholar] [CrossRef]
- Schumann, G.; Andreassen, O.A.; Banaschewski, T.; Calhoun, V.D.; Clinton, N.; Desrivieres, S.; Brandlistuen, R.E.; Feng, J.; Hese, S.; Hitchen, E.; et al. Addressing Global Environmental Challenges to Mental Health Using Population Neuroscience: A Review. JAMA Psychiatry 2023, 80, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Cervenka, S.; Frick, A.; Bodén, R.; Lubberink, M. Application of Positron Emission Tomography in Psychiatry—Methodological Developments and Future Directions. Transl. Psychiatry 2022, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Moriarity, D.P.; Slavich, G.M. The Future Is Dynamic: A Call for Intensive Longitudinal Data in Immunopsychiatry. Brain Behav. Immun. 2023, 112, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Gratton, C.; Nelson, S.M.; Gordon, E.M. Brain-Behavior Correlations: Two Paths toward Reliability. Neuron 2022, 110, 1446–1449. [Google Scholar] [CrossRef]
- Winter, N.R.; Leenings, R.; Ernsting, J.; Sarink, K.; Fisch, L.; Emden, D.; Blanke, J.; Goltermann, J.; Opel, N.; Barkhau, C.; et al. Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder Across Neuroimaging Modalities. JAMA Psychiatry 2022, 79, 879–888. [Google Scholar] [CrossRef]
- Kim, J.U.; Bessette, K.L.; Westlund-Schreiner, M.; Pocius, S.; Dillahunt, A.K.; Frandsen, S.; Thomas, L.; Easter, R.; Skerrett, K.; Stange, J.P.; et al. Relations of Gray Matter Volume to Dimensional Measures of Cognition and Affect in Mood Disorders. Cortex 2022, 156, 57–70. [Google Scholar] [CrossRef]
- Chen, X.; Lu, B.; Li, H.-X.; Li, X.-Y.; Wang, Y.-W.; Castellanos, F.X.; Cao, L.-P.; Chen, N.-X.; Chen, W.; Cheng, Y.-Q.; et al. The DIRECT Consortium and the REST-Meta-MDD Project: Towards Neuroimaging Biomarkers of Major Depressive Disorder. Psychoradiology 2022, 2, 32–42. [Google Scholar] [CrossRef]
- Lippard, E.T.C.; Nemeroff, C.B. Going beyond Risk Factor: Childhood Maltreatment and Associated Modifiable Targets to Improve Life-Long Outcomes in Mood Disorders. Pharmacol. Biochem. Behav. 2022, 215, 173361. [Google Scholar] [CrossRef] [PubMed]
- Mario, A.; Ivana, L.; Anita, M.; Silvio, M.; Claudia, A.; Mariaclaudia, M.; Antonello, B. Inflammatory Biomarkers, Cognitive Functioning, and Brain Imaging Abnormalities in Bipolar Disorder: A Systematic Review. Clin. Neuropsychiatry 2024, 21, 32–62. [Google Scholar] [CrossRef]
- Zheng, J.; Zong, X.; Tang, L.; Guo, H.; Zhao, P.; Womer, F.; Zhang, X.; Tang, Y.; Wang, F. Characterizing the Distinct Imaging Phenotypes, Clinical Behavior, and Genetic Vulnerability of Brain Maturational Subtypes in Mood Disorders. Psychol. Med. 2024, 54, 2774–2784. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.; Li, J.; Berardinelli, J.; Jin, H.; Santini, T.; Noh, J.; Farhat, N.; Wu, M.; Aizenstein, H.; Mettenburg, J.; et al. Correlating Hippocampal and Amygdala Volumes with Neuropathological Burden in Neurodegenerative Diseases Using 7T Postmortem MRI. Alzheimer’s Dement. 2024, 20, e083741. [Google Scholar] [CrossRef]
- Lucas, A.; Mouchtaris, S.; Tranquille, A.; Sinha, N.; Gallagher, R.; Mojena, M.; Stein, J.M.; Das, S.; Davis, K.A. Mapping Hippocampal and Thalamic Atrophy in Epilepsy: A 7-T Magnetic Resonance Imaging Study. Epilepsia 2024, 65, 1092–1106. [Google Scholar] [CrossRef] [PubMed]
- Maj, E.; Wolak, T.; De Meulder, J.; Janiszewska, K.; Wojtaszek, M.; Kostera-Pruszczyk, A.; Gołębiowski, M.; Łusakowska, A. Differences in Diffusion Tensor Imaging Parameters of Brain White Matter Tracts between Patients with Myotonic Dystrophy Type 1 and Type 2—A Retrospective Single-Centre Study. Neurol. I Neurochir. Pol. 2023, 57, 430–437. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, H.; Wang, L.; Zhang, C.; Feng, Z.; Li, Z.; Tong, L.; Yan, B.; Hu, G. Altered Amygdala Functional Connectivity after Real-Time Functional MRI Emotion Self-Regulation Training. NeuroReport 2023, 34, 537–545. [Google Scholar] [CrossRef]
- Moretto, M.; Luciani, B.; Zigiotto, L.; Saviola, F.; Tambalo, S.; Cabalo, D.; Annicchiarico, L.; Venturini, M.; Jovicich, J.; Sarubbo, S. Resting State Functional Networks in Gliomas: Validation With Direct Electric Stimulation of a New Tool for Planning Brain Resections. Neurosurgery 2024, 95, 1358–1368. [Google Scholar] [CrossRef]
- Faulkner, M.E.; Gong, Z.; Guo, A.; Laporte, J.P.; Bae, J.; Bouhrara, M. Harnessing Myelin Water Fraction as an Imaging Biomarker of Human Cerebral Aging, Neurodegenerative Diseases, and Risk Factors Influencing Myelination: A Review. J. Neurochem. 2024, 168, 2243–2263. [Google Scholar] [CrossRef]
- Skocic, J.; Richard, L.; Ferkul, A.; Cox, E.; Tseng, J.; Laughlin, S.; Bouffet, E.; Mabbott, D.J. Multimodal Imaging with Magnetization Transfer and Diffusion Tensor Imaging Reveals Evidence of Myelin Damage in Children and Youth Treated for a Brain Tumor. Neuro-Oncol. Pract. 2024, 11, 307–318. [Google Scholar] [CrossRef]
- Corica, F.; De Feo, M.S.; Gorica, J.; Sidrak, M.M.A.; Conte, M.; Filippi, L.; Schillaci, O.; De Vincentis, G.; Frantellizzi, V. PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside. Diagnostics 2023, 13, 1029. [Google Scholar] [CrossRef] [PubMed]
- Haeger, A.; Fuchs, A.; Romanzetti, S.; Bottlaender, M.; Boumezbeur, F.; Lagarde, J.; Rabrait-Lerman, C.; Holtbernd, F.; Sarazin, M.; Winz, O.; et al. Characterization of Altered Neuroenergetic Patterns in Alzheimer’s Disease Using Combined FDG-PET and Sodium MRI. Alzheimer’s Amp Dement. 2023, 19, e062859. [Google Scholar] [CrossRef]
- Shui, L.; Shibata, D.; Chan, K.C.G.; Zhang, W.; Sung, J.; Haynor, D.R. Alzheimer’s Disease Neuroimaging Initiative Longitudinal Relationship Between Brain Atrophy Patterns, Cognitive Decline, and Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease Explored by Orthonormal Projective Non-Negative Matrix Factorization. J. Alzheimer’s Dis. 2024, 98, 969–986. [Google Scholar] [CrossRef] [PubMed]
- Ten Kate, M.; Barkhof, F.; Schwarz, A.J. Consistency between Treatment Effects on Clinical and Brain Atrophy Outcomes in Alzheimer’s Disease Trials. J. Prev. Alzheimer’s Dis. 2024, 11, 38–47. [Google Scholar] [CrossRef]
- McWhinney, S.R.; Hlinka, J.; Bakstein, E.; Dietze, L.M.F.; Corkum, E.L.V.; Abé, C.; Alda, M.; Alexander, N.; Benedetti, F.; Berk, M.; et al. Principal Component Analysis as an Efficient Method for Capturing Multivariate Brain Signatures of Complex Disorders—ENIGMA Study in People with Bipolar Disorders and Obesity. Hum. Brain Mapp. 2024, 45, e26682. [Google Scholar] [CrossRef]
- Song, J. BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. J. Lipid Atheroscler. 2024, 13, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Wójtowicz, K.; Czarzasta, K.; Przepiorka, L.; Kujawski, S.; Cudnoch-Jedrzejewska, A.; Marchel, A.; Kunert, P. Brain-Derived Neurotrophic Factor (BDNF) Concentration Levels in Cerebrospinal Fluid and Plasma in Patients With Glioblastoma: A Prospective, Observational, Controlled Study. Cureus 2023, 15, e48237. [Google Scholar] [CrossRef]
- Großmann, N.L.; Weihs, A.; Kühn, L.; Sauer, S.; Röh, S.; Wiechmann, T.; Rex-Haffner, M.; Völzke, H.; Völker, U.; Binder, E.B.; et al. Methylation Patterns of the FKBP5 Gene in Association with Childhood Maltreatment and Depressive Disorders. Int. J. Mol. Sci. 2024, 25, 1485. [Google Scholar] [CrossRef]
- Malpetti, M.; Swann, P.; Tsvetanov, K.A.; Chouliaras, L.; Strauss, A.; Chikaura, T.; Murley, A.G.; Ashton, N.J.; Barker, P.; Jones, P.S.; et al. Blood Inflammation Relates to Neuroinflammation and Survival in Frontotemporal Lobar Degeneration. Brain 2025, 148, 493–505. [Google Scholar] [CrossRef]
- Sulisthio, S.; Kandou, R.D.; Jehosua, S.; Momole, A. Role of Proinflammatory Biomarkers in Parkinson’s Disease with Non-Motor Symptoms: A Systematic Review and Meta-Analysis. Rom. J. Neurol. 2024, 23, 221–228. [Google Scholar] [CrossRef]
- Mazumdar, P.; Kishore Phukan, J.; Srinivasan, V. Oxidative stress markers in type 2 diabetes mellitus. IJAR 2024, 12, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.I. Obesity in Western Iraqi Patients: The Involvement of Glutathione Peroxidase, Catalase, Superoxide Dismutase, and Malondialdehyde. Wasit J. Pure Sci. 2023, 2, 224–234. [Google Scholar] [CrossRef]
- Li, W.; Sun, J.; Sun, R.; Wei, Y.; Zheng, J.; Zhu, Y.; Guo, T. Integral-Omics: Serial Extraction and Profiling of Metabolome, Lipidome, Genome, Transcriptome, Whole Proteome and Phosphoproteome Using Biopsy Tissue. Anal. Chem. 2025, 97, 1190–1198. [Google Scholar]
- Pratapa, A.; Jensen, S.M.; Jhaveri, N.; Koguchi, Y.; Rajamanickam, V.; Bernard, B.; Christie, T.; Piening, B.; Leidner, R.S.; Braubach, O.; et al. Abstract 6764: Multi-Parametric Comparison of scRNA-Seq with CITE-Seq and Ultrahigh-Plex Spatial Phenotyping of Proteins in FFPE Head and Neck Tumor Biopsies: An Opportunity to Generate Uniquely Comprehensive Multi-Omic Single Cell Datasets to Investigate the Tumor Microenvironment. Cancer Res. 2023, 83, 6764. [Google Scholar] [CrossRef]
- Chopra, A.; Xylaki, M.; Yin, F.; Castro-Hernández, R.; Merghani, M.; Grande, V.; Mollenhauer, B.; Fischer, A.; Outeiro, T.F. The Epitranscriptomic m6A RNA Modification Modulates Synaptic Function in Ageing and in a Mouse Model of Synucleinopathy. bioRxiv 2024, 2024, 612649. [Google Scholar]
- Lu, L.; Kotowska, A.M.; Kern, S.; Fang, M.; Rudd, T.R.; Alexander, M.R.; Scurr, D.J.; Zhu, Z. Metabolomic and Proteomic Analysis of ApoE4-Carrying H4 Neuroglioma Cells in Alzheimer’s Disease Using OrbiSIMS and LC-MS/MS. Anal. Chem. 2024, 96, 11760–11770. [Google Scholar] [CrossRef]
- Ma, S.; Zeng, A.G.X.; Haibe-Kains, B.; Goldenberg, A.; Dick, J.E.; Wang, B. Integrate Any Omics: Towards Genome-Wide Data Integration for Patient Stratification. bioRxiv 2024, 2024, 612649. [Google Scholar]
- Shakyawar, S.K.; Sajja, B.R.; Patel, J.C.; Guda, C. CluF: An Unsupervised Iterative Cluster-Fusion Method for Patient Stratification Using Multiomics Data. Bioinform. Adv. 2024, 4, vbae015. [Google Scholar] [CrossRef]
- Franks, S.N.J.; Heon-Roberts, R.; Ryan, B.J. CRISPRi: A Way to Integrate iPSC-Derived Neuronal Models. Biochem. Soc. Trans. 2024, 52, 539–551. [Google Scholar] [CrossRef]
- Mrza, M.A.; He, J.; Wang, Y. Integration of iPSC-Derived Microglia into Brain Organoids for Neurological Research. Int. J. Mol. Sci. 2024, 25, 3148. [Google Scholar] [CrossRef]
- Todeva-Radneva, A.; Paunova, R.; Stoyanov, D.; Zdravkova, T.; Kandilarova, S. Altered Functional Connectivity of Salience Network in Mood Disorders. Eur. Psychiatry 2023, 66, S610–S611. [Google Scholar] [CrossRef]
- Burkhart, M.C.; Lee, L.Y.; Vaghari, D.; Venton, J.; Thomas, S.; Smith, N.; Everson, R.; Tino, P.; Kourtzi, Z. the Early Detection of Neurodegenerative diseases initiative AI-guided Patient Stratification for Neurodegenerative Disorders Using Unsupervised Trajectory Modelling. Alzheimer’s Dement. 2023, 19, e074696. [Google Scholar] [CrossRef]
- Siraj, S. Precision Medicine Approaches for Psychosis Treatment. Precis. Med. Commun. 2023, 3, 01–02. [Google Scholar] [CrossRef]
- Barrutieta-Arberas, I.; Ortuzar, N.; Vaquero-Rodríguez, A.; Picó-Gallardo, M.; Bengoetxea, H.; Guevara, M.; Gargiulo, P.; Lafuente, J. The Role of Ketamine in Major Depressive Disorders: Effects on Parvalbumin-Positive Interneurons in Hippocampus. Exp. Biol. Med. 2023, 248, 588–595. [Google Scholar] [CrossRef]
- Chapman, H.L.; Anastasio, N.C. 453 Ketamine Promotes Sustained Brain-Derived Neurotrophic Factor Levels in the Corticoaccumbens Circuit. J. Clin. Transl. Sci. 2024, 8, 134. [Google Scholar] [CrossRef]
- Wojtas, A.; Bysiek, A.; Wawrzczak-Bargiela, A.; Maćkowiak, M.; Gołembiowska, K. Limbic System Response to Psilocybin and Ketamine Administration in Rats: A Neurochemical and Behavioral Study. Int. J. Mol. Sci. 2023, 25, 100. [Google Scholar] [CrossRef]
- Zhao, X.; Du, Y.; Yao, Y.; Dai, W.; Yin, Y.; Wang, G.; Li, Y.; Zhang, L. Psilocybin Promotes Neuroplasticity and Induces Rapid and Sustained Antidepressant-like Effects in Mice. J. Psychopharmacol. 2024, 38, 489–499. [Google Scholar] [CrossRef]
- Zhornitsky, S.; Oliva, H.N.P.; Jayne, L.A.; Allsop, A.S.A.; Kaye, A.P.; Potenza, M.N.; Angarita, G.A. Changes in Synaptic Markers after Administration of Ketamine or Psychedelics: A Systematic Scoping Review. Front. Psychiatry 2023, 14, 1197890. [Google Scholar] [CrossRef]
- Olufunso, A.B.; David, A.A.; Phillips, A.O.; Bangsi, A.C.; Olajoju, O.M.; Oluwadunsin, A.I.; Babatunde, O.O.; Olub, A.O. Molecular Crossfires between Inflammasome Signalling and Dietary Small Molecule Inhibitors in Neurodegenerative Diseases: Implications for Medical Nutrition Therapy. EAS J. Biotechnol. Genet. 2024, 6, 68–80. [Google Scholar] [CrossRef]
- Sun, L.; Apweiler, M.; Tirkey, A.; Klett, D.; Normann, C.; Dietz, G.P.H.; Lehner, M.D.; Fiebich, B.L. Anti-Neuroinflammatory Effects of Ginkgo Biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. Int. J. Mol. Sci. 2024, 25, 8108. [Google Scholar] [CrossRef]
- Calarco, C.A.; Keppetipola, S.M.; Kumar, G.; Shipper, A.G.; Lobo, M.K. Whole Blood Mitochondrial Copy Number in Clinical Populations with Mood Disorders: A Meta-Analysis. Psychiatry Res. 2023, 331, 115662. [Google Scholar] [PubMed]
- Ji, J.; Dong, W.; Li, J.; Peng, J.; Feng, C.; Liu, R.; Shi, C.; Ma, Y. Depressive and Mania Mood State Detection through Voice as a Biomarker Using Machine Learning. Front. Neurol. 2024, 15, 1394210. [Google Scholar] [CrossRef] [PubMed]
- Koller, D.; Beam, A.; Manrai, A.; Ashley, E.; Liu, X.; Gichoya, J.; Holmes, C.; Zou, J.; Dagan, N.; Wong, T.Y.; et al. Why We Support and Encourage the Use of Large Language Models in NEJM AI Submissions. NEJM AI 2024, 1, AIe2300128. [Google Scholar] [CrossRef]
Model | Main Hypothesis | Major Molecular and Cellular Mediators | Criticism/Limitations |
---|---|---|---|
Monoamine Hypothesis | Mood disorders are due to neurotransmitter dysregulation (serotonin, norepinephrine) | 5-HT receptors, norepinephrine, dopamine | Does not account for structural changes; slow response to SSRIs |
Neuroinflammatory Hypothesis | Chronic inflammation disrupts neurogenesis, contributing to mood disorders | IL-6, TNF-α, microglia, astrocytes | Inconsistent findings across populations |
Mitochondrial Dysfunction Hypothesis | Impaired mitochondrial function leads to neuronal energy deficits, excitotoxicity | Oxidative phosphorylation, ETC, ROS | Limited clinical trials; need for biomarkers |
Neuronal Atrophy Hypothesis | Mood disorders arise from synaptic loss and structural changes due to stress | BDNF, glucocorticoids, cytokines | Requires more longitudinal evidence in humans |
Brain Region | Observed Structural Change | Associated Mood Disorder Symptoms | Imaging/Analysis Technique |
---|---|---|---|
Prefrontal Cortex | Reduced dendritic arborization and synaptic density | Impaired decision-making, emotional dysregulation | MRI, post-mortem analysis |
Hippocampus | Atrophy, decreased neurogenesis | Memory impairments, cognitive deficits, emotional imbalance | MRI, volumetric studies |
Amygdala | Altered volume (often reduced) | Heightened emotional sensitivity, increased reactivity to stressors | MRI, PET |
Thalamus | Altered functional connectivity, decreased volume | Altered sensory and emotional integration | Functional MRI, connectivity analysis |
Basal Ganglia | Reduced striatal volume, impaired reward processing | Dysregulated motivation and reward processing | MRI, functional connectivity studies |
Orbitofrontal Cortex | Reduced activity, impaired decision-making | Deficits in impulse control and affect regulation | fMRI, PET |
Cerebellum | Decreased volume, motor and cognitive dysfunction | Coordination and cognitive control deficits | MRI, fMRI |
Anterior Cingulate Cortex | Structural thinning, reduced functional connectivity | Disrupted emotional self-regulation | MRI, structural analysis |
Corpus Callosum | White matter integrity loss, reduced interhemispheric connectivity | Impaired interhemispheric communication | DTI, MRI |
White Matter | Reduced integrity | Deficits in executive function, processing speed, emotional regulation | Diffusion Tensor Imaging (DTI) |
Mechanism | Molecular Pathway | Impact on Neuronal Atrophy | Implications for Mood Disorders |
---|---|---|---|
Brain-Derived Neurotrophic Factor (BDNF) | BDNF-TrkB Signaling, PI3K/Akt/mTOR, MAPK/ERK | BDNF deficiency reduces synaptic plasticity, dendritic branching, and neurogenesis | Low BDNF linked to depression and treatment-resistant mood disorders; antidepressants increase BDNF |
Glucocorticoids and HPA Axis Dysregulation | HPA Axis Activation, Cortisol Signaling | Chronic cortisol exposure shrinks dendrites, impairs neurogenesis, and increases excitotoxicity | HPA hyperactivity found in major depression; cortisol elevation correlates with hippocampal shrinkage |
Neuroinflammation (Cytokines and Microglia) | IL-6, TNF-⍺, Microglia Activation, IL-33/ST2 | Pro-inflammatory cytokines impair neurogenesis, increase apoptosis, and contribute to microglial overactivation | Inflammation correlates with depressive symptoms; anti-inflammatory treatments show antidepressant potential |
Mitochondrial Dysfunction | Electron Transport Chain, Oxidative Stress, Mitophagy | Impaired mitochondrial function disrupts ATP production, increases ROS, leading to synaptic damage and neurodegeneration | Mitochondrial dysfunction affects neuronal energy metabolism in bipolar disorder and major depression |
Treatment | Mechanism of Action | Efficacy | Side Effects | Limitations |
---|---|---|---|---|
Selective Serotonin Reuptake Inhibitors (SSRIs) | Inhibits serotonin reuptake to increase serotonin levels | Effective for mild to moderate depression; limited for TRD | Nausea, sexual dysfunction, emotional blunting | Delayed onset; high relapse rates in TRD |
Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs) | Inhibits serotonin and norepinephrine reuptake | Similar to SSRIs but may benefit some TRD cases | Increased blood pressure, withdrawal effects | Similar to SSRIs; withdrawal effects can be severe |
Tricyclic Antidepressants (TCAs) | Blocks serotonin and norepinephrine transporters | Effective but high side effect profile limits use | Cardiotoxicity, sedation, weight gain | High toxicity; not first-line due to side effects |
Monoamine Oxidase Inhibitors (MAOIs) | Inhibits monoamine oxidase enzyme, increasing neurotransmitter levels | Used in treatment-resistant cases; significant dietary restrictions | Hypertensive crisis (with certain foods), insomnia | Significant dietary restrictions; hypertensive risk |
Ketamine (NMDA Antagonist) | Modulates glutamatergic neurotransmission via NMDA receptor blockade | Rapid-acting for TRD; effects last days to weeks | Dissociation, potential for abuse | Expensive; requires specialized administration |
Psychedelics (Psilocybin, LSD) | Agonizes 5-HT2A receptors, promoting neuroplasticity | Potential for long-term remission; ongoing clinical trials | Hallucinations, altered perception, potential for misuse | Legal restrictions; long-term effects unclear |
Transcranial Magnetic Stimulation (TMS) | Uses magnetic fields to stimulate brain regions involved in mood regulation | Moderately effective for TRD; non-invasive | Mild headaches, scalp discomfort | Requires multiple sessions; inconsistent results |
Deep Brain Stimulation (DBS) | Electrically stimulates targeted deep brain structures | Potential in severe TRD; requires surgical implantation | Surgical risks, brain hemorrhage (rare) | Invasive procedure; ethical concerns |
Anti-inflammatory Agents | Reduces neuroinflammation via cytokine modulation | Emerging data suggest benefits, but requires further validation | Potential immune suppression, unknown long-term risks | Lack of large-scale trials; variable responses |
Mitochondrial Modulators (CoQ10, Creatine) | Enhances mitochondrial function and ATP production | Promising adjunctive therapy; limited clinical trial data | GI distress, unknown long-term effects | More studies needed on efficacy and dosing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasner, H.; Ong, C.V.; Hewitt, P.; Vida, T.A. From Stress to Synapse: The Neuronal Atrophy Pathway to Mood Dysregulation. Int. J. Mol. Sci. 2025, 26, 3219. https://doi.org/10.3390/ijms26073219
Krasner H, Ong CV, Hewitt P, Vida TA. From Stress to Synapse: The Neuronal Atrophy Pathway to Mood Dysregulation. International Journal of Molecular Sciences. 2025; 26(7):3219. https://doi.org/10.3390/ijms26073219
Chicago/Turabian StyleKrasner, Henry, Claire Victoria Ong, Paige Hewitt, and Thomas A. Vida. 2025. "From Stress to Synapse: The Neuronal Atrophy Pathway to Mood Dysregulation" International Journal of Molecular Sciences 26, no. 7: 3219. https://doi.org/10.3390/ijms26073219
APA StyleKrasner, H., Ong, C. V., Hewitt, P., & Vida, T. A. (2025). From Stress to Synapse: The Neuronal Atrophy Pathway to Mood Dysregulation. International Journal of Molecular Sciences, 26(7), 3219. https://doi.org/10.3390/ijms26073219