Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials
Abstract
:1. Introduction
2. Microtubule Regulating Proteins
2.1. Microtubule-Associated Proteins (MAPs) and Microtubule-Targeting Agents (MTAs)
2.2. Motor Proteins
2.3. Mitotic Kinase Proteins/Enzymes
3. Mitotic Inhibitors
3.1. Mitotic Inhibitors Affecting Microtubulin and/or Its Related Proteins
3.1.1. Microtubule Binding/Protein-Related Drugs: Natural
Taxanes
Vinblastine and Vincristine
Epothilones
Combretastatin A4
Trichostatin A
Nordihydroguaiaretic Acid (NDGA)
Colchicine
3.1.2. Synthetic Microtubulin Binding/Protein-Related Drugs
Nocodazole
Monastrol
S-Trityl-L-Cysteine
Dynarrestin
Blebbistatin and Its Derivatives
3.1.3. Semi-Synthetic Microtubulin Binding/Protein-Related Drugs
Docetaxel
Cabazitaxel
Vinorelbine and Vindesine (Vinca Alkaloids)
Ixabepilone
3.2. Synthetic Checkpoint Kinase 1 (CHK1) Inhibitors
3.3. Synthetic Kinase Inhibitors
3.3.1. Aurora Kinase Inhibitors
3.3.2. Polo-like Kinase Inhibitors
3.4. Antibody–Drug Conjugates (ADCs) with Mitotic Inhibitors as Payloads
3.4.1. ADCs Using Taxanes
3.4.2. ADCs Using Vinca Alkaloids
3.4.3. ADCs Using DM-1
3.4.4. ADCs Using MMAE
3.4.5. ADCs Using MMAF
3.5. Clinical Studies
3.5.1. Paclitaxel
3.5.2. Docetaxel
3.5.3. Cabazitaxel
3.5.4. Vinblastine
3.5.5. Vincristine
3.5.6. Vinorelbine
3.5.7. Vindesine
3.5.8. Combretastatin A4 Phosphate
3.5.9. Ixabepilone
3.5.10. Alisertib (MLN8237)
3.5.11. ENMD-2076
4. Conclusions and Future Aspects
5. Abbreviations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Boynton, E. Study: A New Way to Slow Cancer Cell Growth; URMC: Rochester, NY, USA, 2017. [Google Scholar]
- Cooper, G.M. The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Yu, H.; Li, Y.; Li, L.; Huang, J.; Wang, X.; Tang, R.; Jiang, Z.; Lv, L.; Chen, F.; Yu, C.; et al. Functional Reciprocity of Proteins Involved in Mitosis and Endocytosis. FEBS J. 2020, 288, 5850–5866. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Park, J.; Cho, J.; Kim, E.E.; Song, E.J. Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int. J. Mol. Sci. 2019, 20, 5997. [Google Scholar] [CrossRef] [PubMed]
- Cassimeris, L. Microtubule Associated Proteins in Neurons. Encycl. Neurosci. 2009, 865–870. [Google Scholar] [CrossRef]
- Bates, D.; Eastman, A. Microtubule destabilizing agents: Far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol. 2017, 83, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting Microtubules by Natural Agents For Cancer Therapy. Mol. Cancer Ther. 2014, 13, 275–284. [Google Scholar] [CrossRef]
- Danziger, M.; Noble, H.; Roque, D.M.; Xu, F.; Rao, G.G.; Santin, A.D. Microtubule-Targeting Agents: Disruption of the Cellular Cytoskeleton as a Backbone of Ovarian Cancer Therapy. In Cell and Molecular Biology of Ovarian Cancer; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Sweeney, H.L.; Holzbaur, L.F. Motor Proteins. Cold Spring Harb. Perspect. Biol. 2018, 10, a021931. [Google Scholar] [CrossRef]
- Goshima, G.; Vale, R.D. The roles of microtubule-based motor proteins in mitosis: Comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 2003, 162, 1003–1016. [Google Scholar] [CrossRef]
- Ali, I.; Yang, C. The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adhes. Migr. 2020, 14, 139–152. [Google Scholar] [CrossRef]
- Roberts, A.J.; Kon, T.; Knight, P.J.; Sutoh, K.; Burgess, S.A. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 2013, 14, 713–726. [Google Scholar] [CrossRef]
- Canty, J.T.; Tan, R.; Kusakci, E.; Fernandes, J.; Yildiz, A. Structure and Mechanics of Dynein Motors. Annu. Rev. Biophys. 2021, 50, 549. [Google Scholar]
- Hassan Ibrahim, I.; Balah, A.; Gomaa Abd Elfattah Hassan, A.; Gamal Abd El-Aziz, H. Role of motor proteins in human cancers. Saudi J. Biol. Sci. 2022, 29, 103436. [Google Scholar]
- Molinari, M. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif. 2000, 33, 261–274. [Google Scholar] [PubMed]
- Javed, A.; Ozduman, G.; Altun, S.; Duran, D.; Yerli, D.; Ozar, T.; Simsek, F.; Korkmaz, K.S. Mitotic kinase inhibitors as Therapeutic Interventions for Prostate Cancer: Evidence from In vitro Studies. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 1699–1712. [Google Scholar]
- Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548591/ (accessed on 18 April 2024).
- Dmello, C.; Zhao, J.; Chen, L.; Gould, A.; Castro, B.; Arrieta, V.A.; Zhang, D.Y.; Kim, K.; Kanojia, D.; Zhang, P.; et al. Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade. Nat. Commun. 2023, 14, 1566. [Google Scholar] [PubMed]
- Bower, J.J.; Vance, L.D.; Psioda, M.; Smith-Roe, S.L.; Simpson, D.A.; Ibrahim, J.G.; Hoadley, K.A.; Perou, C.M.; Kaufmann, W.K. Patterns of cell cycle checkpoint deregulation associated with intrinsic molecular subtypes of human breast cancer cells. Npj Breast Cancer 2017, 3, 9. [Google Scholar]
- Čermák, V.; Dostál, V.; Jelínek, M.; Libusová, L.; Kovář, J.; Rösel, D.; Brábek, J. Microtubule-Targeting Agents and Their Impact on Cancer Treatment. Eur. J. Cell Biol. 2020, 99, 151075. [Google Scholar] [CrossRef]
- Ismail, U.; Killeen, R.B. Taxane Toxicity. Available online: https://www.ncbi.nlm.nih.gov/books/NBK589655/ (accessed on 18 April 2024).
- Jivani, A.; Shinde, R.K. A Comprehensive Review of Taxane Treatment in Breast Cancer: Clinical Perspectives and Toxicity Profiles. Cureus 2024, 16, e59266. [Google Scholar] [CrossRef]
- Senese, S.; Lo, C.; Gholkar, A.A.; Li, M.; Huang, Y.; Mottahedeh, J.; Kornblum, H.I.; Damoiseaux, R.; Torres, J.Z. Microtubins: A novel class of small synthetic microtubule targeting drugs that inhibit cancer cell proliferation. Oncotarget 2017, 8, 104007–104021. [Google Scholar]
- Finch, G.; Burns-Naas, L. Cancer Chemotherapeutic Agents. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 630–641. [Google Scholar]
- Khing, T.M.; Choi, W.S.; Kim, D.M.; Po, W.W.; Thein, W.; Shin, C.Y.; Sohn, U.D. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci. Rep. 2021, 11, 23490. [Google Scholar]
- Wang, T.H.; Wang, H.S.; Soong, Y.K. Paclitaxel-induced cell death: Where the cell cycle and apoptosis come together. Cancer 2000, 88, 2619–2628. [Google Scholar]
- Long, B.H.; Fairchild, C.R. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telophase. Cancer Res. 1994, 54, 4355–4361. [Google Scholar]
- Fang, C.; Kuo, H.; Hsu, S.; Yih, L. HSP70 regulates Eg5 distribution within the mitotic spindle and modulates the cytotoxicity of Eg5 inhibitors. Cell Death Dis. 2020, 11, 715. [Google Scholar]
- Chen, R.J.; Menezes, R.G. Vinca Alkaloid Toxicity; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Awosika, A.O.; Below, J.; Das, J.M. Vincristine; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Reichenbach, H.; Hofle, G. Discovery and development of the epothilones: A novel class of antineoplastic drugs. Drugs 2008, 9, 1–10. [Google Scholar] [CrossRef]
- Villegas, C.; González-Chavarría, I.; Burgos, V.; Iturra-Beiza, H.; Ulrich, H.; Paz, C. Epothilones as Natural Compounds for Novel Anticancer Drugs Development. Int. J. Mol. Sci. 2023, 24, 6063. [Google Scholar] [CrossRef]
- Varsha, K.; Sharma, A.; Kaur, A.; Madan, J.; Pandey, R.S.; Jain, U.K.; Chandra, R. Natural plant-derived anticancer drugs nanotherapeutics: A review on preclinical to clinical success. Nanostruct. Cancer Ther. 2017, 775–809. [Google Scholar] [CrossRef]
- Karatoprak, G.Ş.; Akkol, E.K.; Genç, Y.; Bardakcı, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications. Molecules 2020, 25, 2560. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Shee, J.; Wu, Y.; Lin, W.; Wu, D.; Liu, W. Combretastatin A-4 inhibits cell growth and metastasis in bladder cancer cells and retards tumour growth in a murine orthotopic bladder tumour model. Br. J. Pharmacol. 2010, 160, 2008–2027. [Google Scholar]
- Guo, K.; Ma, X.; Li, J.; Zhang, C.; Wu, L. Recent advances in combretastatin A-4 codrugs for cancer therapy. Eur. J. Med. Chem. 2022, 241, 114660. [Google Scholar]
- Omar, M.H.; Emam, S.H.; Mikhail, D.S.; Elmeligie, S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem. 2024, 153, 107930. [Google Scholar] [CrossRef]
- Beljanski, V.; Trichostatin, A. XPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–4. [Google Scholar]
- Vigushin, D.M.; Ali, S.; Pace, P.E.; Mirsaidi, N.; Ito, K.; Adcock, I.; Coombes, R.C. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2001, 7, 971–976. [Google Scholar]
- Dowling, M.; Voong, K.R.; Kim, M.; Keutmann, M.K.; Harris, E.; Kao, G.D. Mitotic spindle checkpoint inactivation by trichostatin A defines a mechanism for increasing cancer cell killing by microtubule-disrupting agents. Cancer Biol. Ther. 2005, 4, 197–206. [Google Scholar]
- Bouyahya, A.; Omari, N.; Bakha, M.; Aanniz, T.; Menyiy, N.; Hachlafi, N.; Baaboua, A.; Shazly, M.; Alshahrani, M.; Al Awadh, A.A.; et al. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals 2022, 15, 1235. [Google Scholar] [CrossRef] [PubMed]
- Manda, G.; Rojo, A.I.; Martínez-Klimova, E.; Pedraza-Chaverri, J.; Cuadrado, A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front. Pharmacol. 2020, 11, 151. [Google Scholar]
- Seufferlein, T.; Seckl, M.J.; Schwarz, E.; Beil, M.; Wichert, G.V.; Baust, H.; Luhrs, H.; Schmid, R.M.; Adler, G. Mechanisms of nordihydroguaiaretic acid-induced growth inhibition and apoptosis in human cancer cells. Br. J. Cancer 2002, 86, 1188–1196. [Google Scholar]
- Arasaki, K.; Tani, K.; Yoshimori, T.; Stephens, D.J.; Tagay, M. Nordihydroguaiaretic acid affects multiple dynein-dynactin functions in interphase and mitotic cells. Mol. Pharmacol. 2007, 71, 454–460. [Google Scholar] [PubMed]
- Kushlaf, H.A. Chapter 13—Toxic Myopathies. In Clinical Neurotoxicology: Syndromes Substances, Environment; Dobbs, M.R., Ed.; Elsevier B.V: Lexington, KY, USA, 2009; pp. 675–691. [Google Scholar]
- Hervás, J.P.; Fernández-Gómez, M.E.; Giménez-Martín, G. Colchicine Effect on the Mitotic Spindle: Estimate of Multipolar Anaphase Production. Caryologia 1974, 27, 359–368. [Google Scholar]
- Kamath, A.; Mehal, W.; Jain, D. Colchicine-associated Ring Mitosis in Liver Biopsy and Their Clinical Implications. J. Clin. Gastroenterol. 2008, 42, 1060. [Google Scholar] [CrossRef]
- Taylor, E.W. The Mechanism of Colchicine Inhibition of Mitosis: I. Kinetics of Inhibition and the Binding of H3-Colchicine. J. Cell Biol. 1965, 25, 145–160. [Google Scholar]
- Pyle, S.; Reuhl, K. Cytoskeletal Elements in Neurotoxicity. In Comprehensive Toxicology, 2nd ed.; Rutgers University: New Brunswick, NJ, USA, 2010; Volume 13, pp. 71–87. [Google Scholar]
- Haque, S.A.; Hasaka, T.P.; Brooks, A.D.; Lobanov, P.V.; Baas, P.W. Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons. Cell Motil. Cytoskelet. 2004, 58, 10–16. [Google Scholar]
- Ragab, F.A.; Abou-Seri, S.M.; Abdel-Aziz, S.A.; Alfayomy, A.M.; Aboelmagd, M. Design, synthesis and anticancer activity of new monastrol analogues bearing 1,3,4-oxadiazole moiety. Eur. J. Med. Chem. 2017, 138, 140–151. [Google Scholar]
- Muller, C.; Gross, D.; Sarli, V.; Gartner, M.; Giannis, A.; Bernhardt, G.; Buschauer, A. Inhibitors of kinesin Eg5: Antiproliferative activity of monastrol analogues against human glioblastoma cells. Cancer Chemother. Pharmacol. 2007, 592, 157–164. [Google Scholar]
- Skoufias, D.A.; DeBonis, S.; Saoudi, Y.; Lebeau, L.; Crevel, I.; Cross, R.; Wade, R.H.; Hackney, D.; Kozielski, F. S-Trityl-L-cysteine Is a Reversible, Tight Binding Inhibitor of the Human Kinesin Eg5 That Specifically Blocks Mitotic Progression. J. Biol. Chem. 2006, 281, 17559–17569. [Google Scholar]
- Wu, W.; Jingbo, S.; Xu, W.; Liu, J.; Huang, Y.; Sheng, Q.; Lv, Z. S-trityl-L-cysteine, a novel Eg5 inhibitor, is a potent chemotherapeutic strategy in neuroblastoma. Oncol. Lett. 2018, 16, 1023–1030. [Google Scholar] [PubMed]
- Radwan, M.O.; Ciftci, H.I.S.; Ali, T.F.; Ellakwa, D.E.; Koga, R.; Tateishi, H.; Nakata, A.; Ito, A.; Yoshida, M.; Okamoto, Y.; et al. Antiproliferative S-Trityl-l-Cysteine -Derived Compounds as SIRT2 Inhibitors: Repurposing and Solubility Enhancement. Molecules 2019, 24, 3295. [Google Scholar] [CrossRef]
- Baumann, M.; Höing, S.; Yeh, T.Y.; Martinez, N.; Habenberger, P.; Kremer, L.; Drexler, H.C.A.; Küchler, P.; Reinhardt, P.; Choidas, A.; et al. Abstract 2997: Dynarrestin, a novel dynein inhibitor that does not block ciliogenesis. Cancer Res. 2016, 76, 2997. [Google Scholar]
- Kovacs, M.; Toth, J.; Hetenyi, C.; Malnasi-Csizmadia, A.; Sellers, J.R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 2004, 279, 35557–35563. [Google Scholar]
- Rauscher, A.Á.; Gyimesi, M.; Kovács, M.; Málnási-Csizmadia, A. Targeting Myosin by Blebbistatin Derivatives: Optimization and Pharmacological Potential. Trends Biochem. Sci. 2018, 43, 700–713. [Google Scholar]
- Hashemi, M.; Zandieh, M.A.; Talebi, Y.; Rahmanian, P.; Shafiee, S.S.; Nejad, M.M.; Babaei, R.; Sadi, F.H.; Rajabi, R.; Abkenar, Z.O.; et al. Paclitaxel and Docetaxel Resistance in Prostate Cancer: Molecular Mechanisms and Possible Therapeutic Strategies. Biomed Pharmacother. 2023, 160, 114392. [Google Scholar] [CrossRef]
- Gupta, R.; Kadhim, M.M.; Turki Jalil, A.; Qasim Alasheqi, M.; Alsaikhan, F.; Khalimovna Mukhamedova, N.; Alexis Ramírez-Coronel, A.; Hassan Jawhar, Z.; Ramaiah, P.; Najafi, M. The Interactions of Docetaxel with Tumor Microenvironment. Int. Immunopharmacol. 2023, 119, 110214. [Google Scholar] [CrossRef]
- Beer, T.M.; El-Geneidi, M.; Eilers, K.M. Docetaxel (Taxotere) in the treatment of prostate cancer. Expert Rev. Anticancer Ther. 2003, 3, 261–268. [Google Scholar] [PubMed]
- Morse, D.L.; Gray, H.; Payne, C.M.; Gillies, R.J. Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol. Cancer Ther. 2005, 4, 1495–1504. [Google Scholar] [CrossRef]
- Mann, J.; Yang, N.; Montpetit, R.; Kirschenman, R.; Lemieux, H.; Goping, I.S. BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis. Sci. Rep. 2020, 10, 355. [Google Scholar]
- Abidi, A. Cabazitaxel: A novel taxane for metastatic castration-resistant prostate cancer-current implications and future prospects. J. Pharmacol. Pharmacother. 2013, 4, 230–237. [Google Scholar]
- Sun, B.; Lovell, J.F.; Zhang, Y. Current Development of Cabazitaxel Drug Delivery Systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1854. [Google Scholar] [CrossRef]
- Egerton, N. Ixabepilone (Ixempra), a Therapeutic Option for Locally Advanced or Metastatic Breast Cancer. Pharm. Ther. 2008, 33, 523–531. [Google Scholar]
- Wang, F.-Z.; Fei, H.-R.; Cui, Y.-J.; Sun, Y.-K.; Li, Z.-M.; Wang, X.-Y.; Yang, X.-Y.; Zhang, J.-G.; Sun, B.-L. The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis Int. J. Program. Cell Death 2014, 19, 1389–1398. [Google Scholar]
- Garon, E.B.; Dubinett, S.M. Mitotic Inhibitors. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2011, 6, S1789–S1790. [Google Scholar]
- Scagliotti, G.; Kang, J.H.; Smith, D.; Rosenberg, R.; Park, K.; Kim, S.-W.; Su, W.-C.; Boyd, T.E.; Richards, D.A.; Novello, S.; et al. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Investig. New Drugs 2016, 34, 625–635. [Google Scholar] [CrossRef]
- Carmena, M.; Ruchaud, S.; Earnshaw, W.C. Making the Auroras glow: Regulation of Aurora A and B kinase function by interacting proteins. Curr. Opin. Cell Biol. 2009, 21, 796–805. [Google Scholar]
- Sells, T.B.; Chau, R.; Ecsedy, J.A.; Gershman, R.E.; Hoar, K.; Huck, J.; Janowick, D.A.; Kadambi, V.J.; LeRoy, P.J.; Stirling, M.; et al. MLN8054 and Alisertib (MLN8237): Discovery of Selective Oral Aurora A Inhibitors. ACS Med. Chem. Lett. 2015, 6, 630–634. [Google Scholar] [PubMed]
- Fletcher, G.C.; Broks, R.D.; Denny, T.A.; Hembrough, T.A.; Plum, S.M.; Fogler, W.E.; Sidor, C.F.; Bray, M.R. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol. Cancer Ther. 2011, 10, 126–137. [Google Scholar] [PubMed]
- Borah, N.A.; Reddy, M.M. Aurora Kinase B Inhibition: A Potential Therapeutic Strategy for Cancer. Molecules 2021, 26, 1981. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Meyskens, F.L. The Pan-Aurora Kinase Inhibitor, PHA-739358, Induces Apoptosis and Inhibits Migration in Melanoma Cell Lines. Melanoma Res. 2013, 23, 102. [Google Scholar]
- Kumar, S.; Kim, J. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis. BioMed Res. Int. 2015, 2015, 705745. [Google Scholar]
- Zhang, J.; Zhang, L.; Wang, J.; Ouyang, L.; Wang, Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J. Med. Chem. 2022, 65, 10133–10160. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, S.; Ni, S.; Zhang, B.; Kung, A.C.F.; Gao, J.; Lu, A.; Zhang, G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front. Cell Dev. Biol. 2021, 9, 626910. [Google Scholar]
- Geney, R.; Chen, J.; Ojima, I. Recent advances in the new generation taxane anticancer agents. Med. Chem. 2005, 1, 125–139. [Google Scholar]
- Guillemard, V.; Saragovi, H.U. Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility, and tumor target selectivity. Cancer Res. 2001, 61, 694–699. [Google Scholar]
- Liu, D.; Xu, Y.; Rao, Z.; Chen, Z. Preparation of anti-HER2 monoclonal antibody-paclitaxel immunoconjugate and its biological evaluation. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 735–740. [Google Scholar]
- Gilbert, C.W.; McGowan, E.B.; Seery, G.B.; Black, K.S.; Pegram, M.D. Targeted prodrug treatment of HER-2-positive breast tumor cells using trastuzumab and paclitaxel linked by A-Z-CINN Linker. J. Exp. Ther. Oncol. 2003, 3, 27–35. [Google Scholar]
- Shao, T.; Chen, T.; Chen, Y.; Liu, X.; Chen, L.; Wang, Q.; Zhu, T.; Guo, M.; Li, H.; Ju, D.; et al. Construction of paclitaxel-based antibody–drug conjugates with a PEGylated linker to achieve superior therapeutic index. Signal Transduct. Target. Ther. 2020, 5, 132. [Google Scholar]
- Glatt, D.M.; Beckford Vera, D.R.; Prabhu, S.S.; Mumper, R.J.; Luft, J.C.; Benhabbour, S.R.; Parrott, M.C. Synthesis and Characterization of Cetuximab-Docetaxel and Panitumumab-Docetaxel Antibody-Drug Conjugates for EGFR-Overexpressing Cancer Therapy. Mol. Pharm. 2018, 15, 5089–5102. [Google Scholar] [PubMed]
- Spearman, M.E.; Goodwin, R.M.; Apelgren, L.D.; Bumol, T.F. Disposition of the monoclonal antibody-vinca alkaloid conjugate KS1/4-DAVLB (LY256787) and free 4-desacetylvinblastine in tumor-bearing nude mice. J. Pharmacol. Exp. Ther. 1987, 241, 695–703. [Google Scholar]
- Laguzza, B.C.; Nichols, C.L.; Briggs, S.L.; Cullinan, G.J.; Johnson, D.A.; Starling, J.J.; Baker, A.L.; Bumol, T.F.; Corvalan, J.R. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: Design, preparation, and representative in vivo activity. J. Med. Chem. 1989, 32, 548–555. [Google Scholar] [PubMed]
- Ford, C.H.; Bartlett, S.E.; Casson, A.G.; Marsden, C.H.; Gallant, M.E. Efficacy and specificity of vindesine monoclonal anti-carcinoembryonic antigen conjugate with nine human cancer cell lines. NCI Monogr. A Publ. Natl. Cancer Inst. 1987, 3, 107–116. [Google Scholar]
- García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab Emtansine: Mechanisms of Action and Resistance, Clinical Progress, and Beyond. Trends Cancer 2020, 6, 130–146. [Google Scholar]
- Barok, M.; Joensuu, H.; Isola, J. Trastuzumab emtansine: Mechanisms of action and drug resistance. Breast Cancer Res. BCR 2014, 16, 209. [Google Scholar]
- Hunter, F.W.; Barker, H.R.; Lipert, B.; Rothé, F.; Gebhart, G.; Piccart-Gebhart, M.J.; Sotiriou, C.; Jamieson, S.M.F. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br. J. Cancer 2020, 122, 603–612. [Google Scholar]
- Kim, H.J.; Sung, H.J.; Lee, Y.M.; Choi, S.I.; Kim, H.; Heo, K.; Kim, H. Therapeutic Application of Drug-Conjugated HER2 Oligobody (HER2-DOligobody). Int. J. Mol. Sci. 2020, 21, 3286. [Google Scholar] [CrossRef]
- Li, D.; Lee, D.; Dere, R.C.; Zheng, B.; Yu, S.F.; Fuh, F.K.; Kozak, K.R.; Chung, S.; Bumbaca Yadav, D.; Nazzal, D.; et al. Evaluation and use of an anti-cynomolgus monkey CD79b surrogate antibody-drug conjugate to enable clinical development of polatuzumab vedotin. Br. J. Pharmacol. 2019, 176, 3805–3818. [Google Scholar] [PubMed]
- Rather, G.M.; Lin, Y.; Lin, H.; Szekely, Z.; Bertino, J.R. A Novel Antibody-Toxin Conjugate to Treat Mantle Cell Lymphoma. Front. Oncol. 2019, 9, 258. [Google Scholar]
- Shin, S.H.; Park, H.; Park, S.S.; Ju, E.J.; Park, J.; Ko, E.J.; Bae, D.J.; Kim, Y.; Chung, W.; Song, H.Y.; et al. An Elaborate New Linker System Significantly Enhances the Efficacy of an HER2-Antibody-Drug Conjugate against Refractory HER2-Positive Cancers. Adv. Sci. 2021, 8, 2102414. [Google Scholar]
- Mori, D.; Ishida, H.; Mizuno, T.; Kusumoto, S.; Kondo, Y.; Izumi, S.; Nakata, G.; Nozaki, Y.; Maeda, K.; Sasaki, Y.; et al. Alteration in the Plasma Concentrations of Endogenous Organic Anion-Transporting Polypeptide 1B Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Paclitaxel. Drug Metab. Dispos. Biol. Fate Chem. 2020, 48, 387–394. [Google Scholar] [PubMed]
- Valero, V. Treatment of patients resistant to paclitaxel therapy. Anti-Cancer Drugs 1996, 7, 17–19. [Google Scholar]
- Sonnichsen, D.S.; Relling, M.V. Clinical pharmacokinetics of paclitaxel. Clin. Pharmacokinet. 1994, 27, 256–269. [Google Scholar] [PubMed]
- Takano, M.; Kikuchi, Y.; Kita, T.; Suzuki, M.; Ohwada, M.; Yamamoto, T.; Yamamoto, K.; Inoue, H.; Shimizu, K. Phase I and pharmacological study of single paclitaxel administered weekly for heavily pre-treated patients with epithelial ovarian cancer. Anticancer Res. 2002, 22, 1833–1838. [Google Scholar]
- Soulié, P.; Trandafir, L.; Taamma, A.; Lokiec, F.; Brian, E.; Delord, J.P.; Mita, A.; Vannetzel, J.M.; Cvitkovic, E.; Misset, J.L. Schedule-dependent paclitaxel tolerance/activity: Data from a 7 day infusion phase I study with pharmacokinetics in paclitaxel refractory ovarian cancer. Anti-Cancer Drugs 1997, 8, 763–766. [Google Scholar]
- Woo, M.H.; Relling, M.V.; Sonnichsen, D.S.; Rivera, G.K.; Pratt, C.B.; Pui, C.H.; Evans, W.E.; Pappo, A.S. Phase I targeted systemic exposure study of paclitaxel in children with refractory acute leukemias. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1999, 5, 543–549. [Google Scholar]
- Briasoulis, E.; Karavasilis, V.; Tzamakou, E.; Piperidou, C.; Soulti, K.; Pavlidis, N. Feasibility study and pharmacokinetics of low-dose paclitaxel in cancer patients with severe hepatic dysfunction. Anti-Cancer Drugs 2006, 17, 1219–1222. [Google Scholar]
- Yamamoto, N.; Tsurutani, J.; Yoshimura, N.; Asai, G.; Moriyama, A.; Nakagawa, K.; Kudoh, S.; Takada, M.; Minato, Y.; Fukuoka, M. Phase II study of weekly paclitaxel for relapsed and refractory small cell lung cancer. Anticancer Res. 2006, 26, 777–781. [Google Scholar]
- Yoneda, S.; Nishiwaki, Y.; Niitani, H.; Kurita, Y.; Ariyoshi, Y.; Ikegami, H.; Furuse, K.; Fukuoka, M.; Kimura, I.; Hara, N.; et al. Early phase II study of BMS-181339 (paclitaxel) in patients with non-small cell lung cancer. BMS-181339 Non-Small Clung Cancer Study Group. Cancer Chemother. 1996, 23, 695–701. [Google Scholar]
- Ajani, J.A.; Fairweather, J.; Dumas, P.; Patt, Y.Z.; Pazdur, R.; Mansfield, P.F. Phase II study of Taxol in patients with advanced gastric carcinoma. Cancer J. Sci. Am. 1998, 4, 269–274. [Google Scholar] [PubMed]
- Horiguchi, J.; Rai, Y.; Tamura, K.; Taki, T.; Hisamatsu, K.; Ito, Y.; Seriu, T.; Tajima, T. Phase II study of weekly paclitaxel for advanced or metastatic breast cancer in Japan. Anticancer Res. 2009, 29, 625–630. [Google Scholar] [PubMed]
- Tomiak, E.; Piccart, M.J.; Kerger, J.; Lips, S.; Awada, A.; de Valeriola, D.; Ravoet, C.; Lossignol, D.; Sculier, J.P.; Auzannet, V. Phase I study of docetaxel administered as a 1-hour intravenous infusion on a weekly basis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1994, 12, 1458–1467. [Google Scholar] [CrossRef]
- Nisticò, C.; Cognetti, F.; Frontini, L.; Barni, S.; Ferretti, G.; Bria, E.; Milella, M.; Garufi, C.; Cuppone, F.; Vanni, B.; et al. Weekly docetaxel in pretreated metastatic breast cancer patients: A phase I-II study. Oncology 2005, 68, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Robinet, G.; Thomas, P.; Pérol, M.; Vergnenegre, A.; Lena, H.; Taytard, A.; Paillotin, D.; Bessa, E.H.; Schuller-Lebeau, M.P. Etude de phase II: Docétaxel dans les cancers bronchopulmonaires non à petites cellules inopérables [Phase II study of docetaxel in inoperable advanced non small cell lung cancer]. Bull. Du Cancer 2000, 87, 253–258. [Google Scholar]
- Patil, V.M.; Noronha, V.; Menon, N.; Singh, A.; Ghosh-Laskar, S.; Budrukkar, A.; Bhattacharjee, A.; Swain, M.; Mathrudev, V.; Nawale, K.; et al. Results of Phase III Randomized Trial for Use of Docetaxel as a Radiosensitizer in Patients with Head and Neck Cancer, Unsuitable for Cisplatin-Based Chemoradiation. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 2350–2361. [Google Scholar] [CrossRef]
- Nozawa, M.; Mukai, H.; Takahashi, S.; Uemura, H.; Kosaka, T.; Onozawa, Y.; Miyazaki, J.; Suzuki, K.; Okihara, K.; Arai, Y.; et al. Japanese phase I study of cabazitaxel in metastatic castration-resistant prostate cancer. Int. J. Clin. Oncol. 2015, 20, 1026–1034. [Google Scholar] [CrossRef]
- Kotsakis, A.; Matikas, A.; Koinis, F.; Kentepozidis, N.; Varthalitis, I.I.; Karavassilis, V.; Samantas, E.; Katsaounis, P.; Dermitzaki, E.K.; Hatzidaki, D.; et al. A multicentre phase II trial of cabazitaxel in patients with advanced non-small-cell lung cancer progressing after docetaxel-based chemotherapy. Br. J. Cancer 2016, 115, 784–788. [Google Scholar] [CrossRef]
- Oudard, S.; Fizazi, K.; Sengeløv, L.; Daugaard, G.; Saad, F.; Hansen, S.; Hjälm-Eriksson, M.; Jassem, J.; Thiery-Vuillemin, A.; Caffo, O.; et al. Cabazitaxel Versus Docetaxel as First-Line Therapy for Patients with Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase III Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 3189–3197. [Google Scholar]
- Arnold, E.J.; Childress, M.O.; Fourez, L.M.; Tan, K.M.; Stewart, J.C.; Bonney, P.L.; Knapp, D.W. Clinical trial of vinblastine in dogs with transitional cell carcinoma of the urinary bladder. J. Vet. Intern. Med. 2011, 25, 1385–1390. [Google Scholar] [PubMed]
- Smith, N.F.; Mani, S.; Schuetz, E.G.; Yasuda, K.; Sissung, T.M.; Bates, S.E.; Figg, W.D.; Sparreboom, A. Induction of CYP3A4 by vinblastine: Role of the nuclear receptor NR1I2. Ann. Pharmacother. 2010, 44, 1709–1717. [Google Scholar]
- Kragelj, B.; Zaletel-Kragelj, L.; Sedmak, B.; Cufer, T.; Cervek, J. Phase II study of radiochemotherapy with vinblastine in invasive bladder cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2005, 75, 44–47. [Google Scholar]
- Kellie, S.J.; Koopmans, P.; Earl, J.; Nath, C.; Roebuck, D.; Uges, D.R.; De Graaf, S.S. Increasing the dosage of vincristine: A clinical and pharmacokinetic study of continuous-infusion vincristine in children with central nervous system tumors. Cancer 2004, 100, 2637–2643. [Google Scholar]
- Broun, G.O.; Blessing, J.A.; Eddy, G.L.; Adelson, M.D. A phase II trial of vincristine in advanced or recurrent endometrial carcinoma. A Gynecologic Oncology Group Study. Am. J. Clin. Oncol. 1993, 16, 18–21. [Google Scholar]
- Sørensen, J.B. Vinorelbine. A review of its antitumour activity in lung cancer. Drugs 1992, 44 (Suppl. S4), 60–69. [Google Scholar]
- Iaffaioli, R.V.; Facchini, G.; Tortoriello, A.; Caponigro, F.; Illiano, A.; Gentile, M.; Gravina, A.; Muto, P. Phase I study of vinorelbine and paclitaxel in small-cell lung cancer. Cancer Chemother. Pharmacol. 1997, 41, 86–90. [Google Scholar]
- Gridelli, C.; Guida, C.; Barletta, E.; Gatani, T.; Fiore, F.; Barzelloni, M.L.; Rossi, A.; de Bellis, M.; D’Aniello, R.; Scognamiglio, F. Thoracic radiotherapy and daily vinorelbine as radiosensitizer in locally advanced non small cell lung cancer: A phase I study. Lung Cancer 2000, 29, 131–137. [Google Scholar]
- Pierro, J.A.; Mallett, C.L.; Saba, C.F. Phase I clinical trial of vinorelbine in tumor-bearing cats. J. Vet. Intern. Med. 2013, 27, 943–948. [Google Scholar]
- Rajdev, L.; Negassa, A.; Dai, Q.; Goldberg, G.; Miller, K.; Sparano, J.A. Phase I trial of metronomic oral vinorelbine in patients with advanced cancer. Cancer Chemother. Pharmacol. 2011, 68, 1119–1124. [Google Scholar] [PubMed]
- Jassem, J.; Ramlau, R.; Karnicka-Młodkowska, H.; Krawczyk, K.; Krzakowski, M.; Zatloukal, P.; Lemarié, E.; Hartmann, W.; Novakova, L.; O’Brien, M.; et al. A multicenter randomized phase II study of oral vs. intravenous vinorelbine in advanced non-small-cell lung cancer patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2001, 12, 1375–1381. [Google Scholar]
- Kulke, M.H.; Muzikansky, A.; Clark, J.; Enzinger, P.C.; Fidias, P.; Kinsella, K.; Michelini, A.; Fuchs, C.S. A Phase II trial of vinorelbine in patients with advanced gastroesophageal adenocarcinoma. Cancer Investig. 2006, 24, 346–350. [Google Scholar]
- Rothenberg, M.L.; Liu, P.Y.; Wilczynski, S.; Nahhas, W.A.; Winakur, G.L.; Jiang, C.S.; Moinpour, C.M.; Lyons, B.; Weiss, G.R.; Essell, J.H.; et al. Phase II trial of vinorelbine for relapsed ovarian cancer: A Southwest Oncology Group study. Gynecol. Oncol. 2004, 95, 506–512. [Google Scholar]
- Romero, A.; Rabinovich, M.G.; Vallejo, C.T.; Perez, J.E.; Rodriguez, R.; Cuevas, M.A.; Machiavelli, M.; Lacava, J.A.; Langhi, M.; Romero Acuña, L. Vinorelbine as first-line chemotherapy for metastatic breast carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1994, 12, 336–341. [Google Scholar]
- Twelves, C.J.; Dobbs, N.A.; Curnow, A.; Coleman, R.E.; Stewart, A.L.; Tyrrell, C.J.; Canney, P.; Rubens, R.D. A phase II, multicentre, UK study of vinorelbine in advanced breast cancer. Br. J. Cancer 1994, 70, 990–993. [Google Scholar] [PubMed]
- Bidoli, P.; Stani, S.C.; De Candis, D.; Cortinovis, D.; Parra, H.S.; Bajetta, E. Single-agent chemotherapy with vinorelbine for pretreated or metastatic squamous cell carcinoma of the esophagus. Tumori 2001, 87, 299–302. [Google Scholar]
- Morant, R.; Hsu Schmitz, S.F.; Bernhard, J.; Thürlimann, B.; Borner, M.; Wernli, M.; Egli, F.; Forrer, P.; Streit, A.; Jacky, E.; et al. Vinorelbine in androgen-independent metastatic prostatic carcinoma--a phase II study. Eur. J. Cancer 2002, 38, 1626–1632. [Google Scholar]
- Lhommé, C.; Vermorken, J.B.; Mickiewicz, E.; Chevalier, B.; Alvarez, A.; Mendiola, C.; Pawinski, A.; Lentz, M.A.; Pecorelli, S. Phase II trial of vinorelbine in patients with advanced and/or recurrent cervical carcinoma: An EORTC Gynaecological Cancer Cooperative Group Study. Eur. J. Cancer 2000, 36, 194–199. [Google Scholar]
- Buccheri, G.; Ferrigno, D. Vinorelbine in elderly patients with inoperable nonsmall cell lung carcinoma: A phase II study. Cancer 2000, 88, 2677–2685. [Google Scholar]
- Saxman, S.; Mann, B.; Canfield, V.; Loehrer, P.; Vokes, E. A phase II trial of vinorelbine in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Am. J. Clin. Oncol. 1998, 21, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, F.; Amadori, S.; Giona, F.; Antonietta, M.; Spiriti, A.; Pastore, S.; Meloni, G.; Paolucci, G. Vindesine in the treatment of refractory hematologic malignancies: A phase II study. Leuk. Res. 1982, 6, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Young, G.A.; Jurd, J.; Vincent, P.C. Vindesine in the treatment of refractory haematological malignant diseases. Med. J. Aust. 1985, 142, 189–190. [Google Scholar] [CrossRef]
- Falkson, G.; Burger, W. A phase II trial of vindesine in hepatocellular cancer. Oncology 1995, 52, 86–87. [Google Scholar] [CrossRef] [PubMed]
- Currie, V.E.; Wong, P.P.; Krakoff, I.H.; Young, C.W. Phase I trial of vindesine in patients with advanced cancer. Cancer Treat. Rep. 1978, 62, 1333–1336. [Google Scholar] [PubMed]
- Stevenson, J.P.; Rosen, M.; Sun, W.; Gallagher, M.; Haller, D.G.; Vaughn, D.; Giantonio, B.; Zimmer, R.; Petros, W.P.; Stratford, M.; et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: Magnetic resonance imaging evidence for altered tumor blood flow. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2003, 21, 4428–4438. [Google Scholar] [CrossRef]
- Liu, P.; Qin, Y.; Wu, L.; Yang, S.; Li, N.; Wang, H.; Xu, H.; Sun, K.; Zhang, S.; Han, X.; et al. A phase I clinical trial assessing the safety and tolerability of combretastatin A4 phosphate injections. Anti-Cancer Drugs 2014, 25, 462–471. [Google Scholar] [CrossRef]
- Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W.P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res. 2002, 62, 3408–3416. [Google Scholar]
- McDaid, H.M.; Mani, S.; Shen, H.J.; Muggia, F.; Sonnichsen, D.; Horwitz, S.B. Validation of the pharmacodynamics of BMS-247550, an analogue of epothilone B, during a phase I clinical study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8, 2035–2043. [Google Scholar]
- Aghajanian, C.; Burris, H.A., 3rd; Jones, S.; Spriggs, D.R.; Cohen, M.B.; Peck, R.; Sabbatini, P.; Hensley, M.L.; Greco, F.A.; Dupont, J.; et al. Phase I study of the novel epothilone analog ixabepilone (BMS-247550) in patients with advanced solid tumors and lymphomas. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 1082–1088. [Google Scholar] [CrossRef]
- Widemann, B.C.; Goodspeed, W.; Goodwin, A.; Fojo, T.; Balis, F.M.; Fox, E. Phase I trial and pharmacokinetic study of ixabepilone administered daily for 5 days in children and adolescents with refractory solid tumors. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 550–556. [Google Scholar]
- Thomas, E.; Tabernero, J.; Fornier, M.; Conté, P.; Fumoleau, P.; Lluch, A.; Vahdat, L.T.; Bunnell, C.A.; Burris, H.A.; Viens, P.; et al. Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in patients with taxane-resistant metastatic breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 3399–3406. [Google Scholar] [CrossRef]
- Vansteenkiste, J.; Lara, P.N., Jr.; Le Chevalier, T.; Breton, J.L.; Bonomi, P.; Sandler, A.B.; Socinski, M.A.; Delbaldo, C.; McHenry, B.; Lebwohl, D.; et al. Phase II clinical trial of the epothilone B analog, ixabepilone, in patients with non small-cell lung cancer whose tumors have failed first-line platinum-based chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 3448–3455. [Google Scholar]
- Perez, E.A.; Lerzo, G.; Pivot, X.; Thomas, E.; Vahdat, L.; Bosserman, L.; Viens, P.; Cai, C.; Mullaney, B.; Peck, R.; et al. Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 3407–3414. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Hamilton, A.; Jones, A.; Haas, N.; Shore, T.; Liddell, S.; Christos, P.; Doyle, L.A.; Millward, M.; Muggia, F.M.; et al. A phase II trial of the epothilone B analog ixabepilone (BMS-247550) in patients with metastatic melanoma. PLoS ONE 2010, 5, e8714. [Google Scholar] [CrossRef]
- Nimeiri, H.S.; Singh, D.A.; Kasza, K.; Taber, D.A.; Ansari, R.H.; Vokes, E.E.; Kindler, H.L. The epothilone B analogue ixabepilone in patients with advanced hepatobiliary cancers: A trial of the University of Chicago Phase II Consortium. Investig. New Drugs 2010, 28, 854–858. [Google Scholar]
- Liu, G.; Chen, Y.H.; Dipaola, R.; Carducci, M.; Wilding, G. Phase II trial of weekly ixabepilone in men with metastatic castrate-resistant prostate cancer (E3803): A trial of the Eastern Cooperative Oncology Group. Clin. Genitourin. Cancer 2012, 10, 99–105. [Google Scholar]
- Whitehead, R.P.; McCoy, S.; Rivkin, S.E.; Gross, H.M.; Conrad, M.E.; Doolittle, G.C.; Wolff, R.A.; Goodwin, J.W.; Dakhil, S.R.; Abbruzzese, J.L. A Phase II trial of epothilone B analogue BMS-247550 (NSC #710428) ixabepilone, in patients with advanced pancreas cancer: A Southwest Oncology Group study. Investig. New Drugs 2006, 24, 515–520. [Google Scholar]
- Denduluri, N.; Low, J.A.; Lee, J.J.; Berman, A.W.; Walshe, J.M.; Vatas, U.; Chow, C.K.; Steinberg, S.M.; Yang, S.X.; Swain, S.M. Phase II trial of ixabepilone, an epothilone B analog, in patients with metastatic breast cancer previously untreated with taxanes. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 3421–3427. [Google Scholar]
- Kelly, K.R.; Shea, T.C.; Goy, A.; Berdeja, J.G.; Reeder, C.B.; McDonagh, K.T.; Zhou, X.; Danaee, H.; Liu, H.; Ecsedy, J.A.; et al. Phase I study of MLN8237--investigational Aurora A kinase inhibitor—In relapsed/refractory multiple myeloma, non-Hodgkin lymphoma and chronic lymphocytic leukemia. Investig. New Drugs 2014, 32, 489–499. [Google Scholar]
- Dees, E.C.; Cohen, R.B.; von Mehren, M.; Stinchcombe, T.E.; Liu, H.; Venkatakrishnan, K.; Manfredi, M.; Fingert, H.; Burris, H.A., 3rd; Infante, J.R. Phase I study of aurora A kinase inhibitor MLN8237 in advanced solid tumors: Safety, pharmacokinetics, pharmacodynamics, and bioavailability of two oral formulations. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 4775–4784. [Google Scholar]
- Cervantes, A.; Elez, E.; Roda, D.; Ecsedy, J.; Macarulla, T.; Venkatakrishnan, K.; Roselló, S.; Andreu, J.; Jung, J.; Sanchis-Garcia, J.M.; et al. Phase I pharmacokinetic/pharmacodynamic study of MLN8237, an investigational, oral, selective aurora a kinase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 4764–4774. [Google Scholar]
- Matulonis, U.A.; Sharma, S.; Ghamande, S.; Gordon, M.S.; Del Prete, S.A.; Ray-Coquard, I.; Kutarska, E.; Liu, H.; Fingert, H.; Zhou, X.; et al. Phase II study of MLN8237 (alisertib), an investigational Aurora A kinase inhibitor, in patients with platinum-resistant or -refractory epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. Gynecol. Oncol. 2012, 127, 63–69. [Google Scholar] [PubMed]
- Gay, C.M.; Zhou, Y.; Lee, J.J.; Tang, X.M.; Lu, W.; Wistuba, I.I.; Ferrarotto, R.; Gibbons, D.L.; Glisson, B.S.; Kies, M.S.; et al. A Phase II Trial of Alisertib (MLN8237) in Salvage Malignant Mesothelioma. Oncologist 2020, 25, e1457–e1463. [Google Scholar]
- Mossé, Y.P.; Fox, E.; Teachey, D.T.; Reid, J.M.; Safgren, S.L.; Carol, H.; Lock, R.B.; Houghton, P.J.; Smith, M.A.; Hall, D.; et al. A Phase II Study of Alisertib in Children with Recurrent/Refractory Solid Tumors or Leukemia: Children’s Oncology Group Phase I and Pilot Consortium (ADVL0921). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3229–3238. [Google Scholar]
- Matulonis, U.A.; Lee, J.; Lasonde, B.; Tew, W.P.; Yehwalashet, A.; Matei, D.; Behbakht, K.; Grothusen, J.; Fleming, G.; Lee, N.K.; et al. ENMD-2076, an oral inhibitor of angiogenic and proliferation kinases, has activity in recurrent, platinum resistant ovarian cancer. Eur. J. Cancer 2013, 49, 121–131. [Google Scholar]
- Mitchison, T.J. The proliferation rate paradox in antimitotic chemotherapy. Mol. Biol. Cell 2012, 23, 1–6. [Google Scholar] [CrossRef]
Compound (Class) | Mechanisms of Action | Structure and Stereochemistry |
---|---|---|
Paclitaxel (a taxane) (Natural) | Stabilizes microtubules and disrupts normal spindle dynamics during cell division | |
Docetaxel (Semi-Synthetic) | Interacts with microtubules to disrupt regular cell division | |
Cabazitaxel (Semi-Synthetic) | Interacts with microtubules to disrupt regular cell division | |
Vinblastine (Natural) | Prevents proper mitotic spindle formation and chromosome segregation | |
Vinorelbine (Semi-Synthetic) | Disrupts microtubule dynamics and interphases apoptosis induction | |
Vindesine (Semi-Synthetic) | Disrupts microtubule dynamics with distinct concentration-dependent effects and downstream consequences for mitotic progression | |
Vincristine (Semi-Synthetic) | Disrupts microtubule dynamics, leading to mitotic arrest via spindle assembly checkpoint activation | |
Epothilone (Natural) | Stabilizes microtubules and disrupts their dynamic behavior | |
Nocodazole (Synthetic) | Inhibits cellular division by disrupting microtubule dynamics | |
Combretastatin A4 (Natural) | Interacts with tubulin and subsequently disrupts the microtubule dynamics | |
Trichostatin A (Natural) | Acts as an HDAC (histone deacetylase) inhibitor, leading to several downstream effects on cell cycle regulation and mitotic progression | |
Monastrol (Synthetic) | Inhibits the mitotic kinesin Eg5 (aka KIF11 or kinesin-5) | |
Monastrol Analog-1 (MA-1) (Synthetic) | Inhibits the mitotic kinesin Eg5 (aka KIF11 or kinesin-5) | |
Monastrol Analog-2 (MA-2) (Synthetic) | Inhibits the mitotic kinesin Eg5 (aka KIF11 or kinesin-5) | |
Dimethylenastron (a monastrol analog), (Synthetic) | Binds to a specific allosteric site on the Eg5 motor domain near the ATP/ADP binding pocket | |
S-Trytyl-L-Cysteine (STLC) (Synthetic) | Binds to a specific allosteric site on the Eg5 motor domain, positioned between helix three and loop 5 | |
Dynarrestin (Synthetic) | Inhibits cytoplasmic dynein 1 and 2 | |
Nordihydroguaiaretic Acid (NDGA), (Natural) | Disrupts actin cytoskeleton activates stress-activated protein kinases, induces anoikis-like apoptosis, inhibits cyclin D1 and p300 acetyltransferase | |
Blebbistatin (Synthetic) | Binds to an allosteric site on the myosin II motor domain, situated between the nucleotide pocket and the actin-binding cleft | |
LY2603618 (Rabusertib) (Synthetic) | Inhibits checkpoint kinase 1 (Chk1) | |
PHA-739358 (Danusertib) (Synthetic) | Inhibits aurora kinases | |
Alisertib (MLN8237) (Synthetic) | Inhibits aurora A kinase (AAK) | |
ENMD-2076 (Synthetic) | Inhibits AAK, which causes abnormal mitotic spindle formation, which leads to reduced spindle bipolarity and increases chromosome misalignment | |
BI 6727 (Volaserib) (Synthetic) | Inhibits Polo-like kinase 1 (Plk1) that causes centrosome maturation, bipolar spindle formation, and chromosome alignment | |
NMS-P937 (Onvansertib) (Synthetic) | Inhibits PLK1 and prevents multiple essential steps, including chromosome separation and cytokinesis | |
GSK461364A (Synthetic) | Inhibits PLK1 and ultimately leads to mitotic arrest at the G2/M phase of the cell cycle | |
Ixabepilone (Semi-Synthetic) | Binds to β-tubulin subunits and suppresses their dynamic instability | |
Colchicine (Natural) | Disrupts spindle formation and chromosome segregation during mitosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas, Y.; Chauhan, S.C.; Bandyopadhyay, D. Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials. Int. J. Mol. Sci. 2025, 26, 3279. https://doi.org/10.3390/ijms26073279
Salinas Y, Chauhan SC, Bandyopadhyay D. Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials. International Journal of Molecular Sciences. 2025; 26(7):3279. https://doi.org/10.3390/ijms26073279
Chicago/Turabian StyleSalinas, Yazmin, Subhash C. Chauhan, and Debasish Bandyopadhyay. 2025. "Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials" International Journal of Molecular Sciences 26, no. 7: 3279. https://doi.org/10.3390/ijms26073279
APA StyleSalinas, Y., Chauhan, S. C., & Bandyopadhyay, D. (2025). Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials. International Journal of Molecular Sciences, 26(7), 3279. https://doi.org/10.3390/ijms26073279