Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers
Abstract
:1. Introduction
2. The Principle of DNA Methylation
2.1. Definition and Molecular Basis of DNA Methylation
2.2. Role of DNA Methylation in Gene Expression Regulation
2.2.1. DNA Methylation of Gene Promoters Regulates Gene Expression
2.2.2. DNA Methylation of Gene Introns Regulates Gene Expression
2.2.3. DNA Methylation of Gene Exons Regulates Gene Expression
3. DNA Methylation Markers: Unique Advantages in Clinical Applications
4. Effects of Ionizing Radiation on DNA Methylation
Oxidative Stress and DNA Damage
5. Biomarkers of Ionizing Radiation
5.1. Classical Biomarkers of Ionizing Radiation—γ-H2AX
5.2. Alternative Biomarkers-RNA
5.2.1. RNA Biomarkers
5.2.2. mRNA Biomarkers
5.3. DNA Methylation Biomarkers
5.3.1. High Specificity and Stability
5.3.2. Non-Invasive Testing
5.3.3. Multi-Dimensional Biological Significance
5.3.4. Early Detection and Risk Assessment
5.3.5. Potential for Personalized Medicine
6. Conclusions and Perspectives
6.1. The Complex Interaction Between IR and DNA Methylation
6.2. DNA Methylation as a Biomarker for Ionizing Radiation Exposure
6.3. Addressing the Limitations of Traditional Biomarkers
6.4. Future Directions and Clinical Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santivasi, W.L.; Xia, F. Ionizing Radiation-Induced DNA Damage, Response, and Repair. Antioxid. Redox Signal. 2014, 21, 251–259. [Google Scholar] [PubMed]
- Raavi, V.; Perumal, V.; Paul, S.F. Potential application of γ-H2AX as a biodosimetry tool for radiation triage. Mutat. Research. Rev. Mutat. Res. 2021, 787, 108350. [Google Scholar]
- Shuryak, I.; Royba, E.; Repin, M.; Turner, H.C.; Garty, G.; Deoli, N.; Brenner, D.J. A machine learning method for improving the accuracy of radiation biodosimetry by combining data from the dicentric chromosomes and micronucleus assays. Sci. Rep. 2022, 12, 21077. [Google Scholar]
- Feil, R.; Fraga, M.F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar]
- Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054. [Google Scholar]
- Bollati, V.; Baccarelli, A. Environmental epigenetics. Heredity 2010, 105, 105–112. [Google Scholar]
- Kim, J.G.; Bae, J.H.; Kim, J.A.; Heo, K.; Yang, K.; Yi, J.M. Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells. PLoS ONE 2014, 9, e105405. [Google Scholar]
- Kwon, H.M.; Kang, E.J.; Kang, K.; Kim, S.D.; Yang, K.; Yi, J.M. Combinatorial effects of an epigenetic inhibitor and ionizing radiation contribute to targeted elimination of pancreatic cancer stem cell. Oncotarget 2017, 8, 89005–89020. [Google Scholar]
- Zeng, Y.; Chen, T. DNA Methylation Reprogramming during Mammalian Development. Genes 2019, 10, 257. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [PubMed]
- Martin, C.; Zhang, Y. Mechanisms of epigenetic inheritance. Curr. Opin. Cell Biol. 2007, 19, 266–272. [Google Scholar] [PubMed]
- Kim, M.; Costello, J. DNA methylation: An epigenetic mark of cellular memory. Exp. Mol. Med. 2017, 49, e322. [Google Scholar] [PubMed]
- Ortega-Recalde, O.; Hore, T.A. DNA methylation in the vertebrate germline: Balancing memory and erasure. Essays Biochem. 2019, 63, 649–661. [Google Scholar]
- Martisova, A.; Holcakova, J.; Izadi, N.; Sebuyoya, R.; Hrstka, R.; Bartosik, M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int. J. Mol. Sci. 2021, 22, 4247. [Google Scholar] [CrossRef]
- Pradhan, S.; Bacolla, A.; Wells, R.D.; Roberts, R.J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 1999, 274, 33002–33010. [Google Scholar]
- Yokochi, T.; Robertson, K.D. Preferential methylation of unmethylated DNA by Mammalian de novo DNA methyltransferase Dnmt3a. J. Biol. Chem. 2002, 277, 11735–11745. [Google Scholar]
- Hermann, A.; Goyal, R.; Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem. 2004, 279, 48350–48359. [Google Scholar]
- Chen, Z.; Zhang, Y. Role of Mammalian DNA Methyltransferases in Development. Annu. Rev. Biochem. 2020, 89, 135–158. [Google Scholar]
- Zhang, G.; Pradhan, S. Mammalian epigenetic mechanisms. IUBMB Life 2014, 66, 240–256. [Google Scholar]
- Hashimoto, H.; Liu, Y.; Upadhyay, A.K.; Chang, Y.; Howerton, S.B.; Vertino, P.M.; Zhang, X.; Cheng, X. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012, 40, 4841–4849. [Google Scholar] [CrossRef] [PubMed]
- He, Y.F.; Li, B.Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333, 1303–1307. [Google Scholar] [PubMed]
- Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet. 2017, 18, 517–534. [Google Scholar] [PubMed]
- Lee, D.D.; Komosa, M.; Nunes, N.M.; Tabori, U. DNA methylation of the TERT promoter and its impact on human cancer. Curr. Opin. Genet. Dev. 2020, 60, 17–24. [Google Scholar]
- Neri, F.; Rapelli, S.; Krepelova, A.; Incarnato, D.; Parlato, C.; Basile, G.; Maldotti, M.; Anselmi, F.; Oliviero, S. Intragenic DNA methylation prevents spurious transcription initiation. Nature 2017, 543, 72–77. [Google Scholar]
- Hellman, A.; Chess, A. Gene body-specific methylation on the active X chromosome. Science 2007, 315, 1141–1143. [Google Scholar]
- Tillotson, R.; Selfridge, J.; Koerner, M.V.; Gadalla, K.K.E.; Guy, J.; De Sousa, D.; Hector, R.D.; Cobb, S.R.; Bird, A. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature 2017, 550, 398–401. [Google Scholar]
- Mendonca, A.; Sanchez, O.F.; Liu, W.; Li, Z.; Yuan, C. CpG dinucleotide positioning patterns determine the binding affinity of methyl-binding domain to nucleosomes. BBA Gene Regul. Mech. 2017, 1860, 713–720. [Google Scholar]
- Maekawa, R.; Mihara, Y.; Sato, S.; Okada, M.; Tamura, I.; Shinagawa, M.; Shirafuta, Y.; Takagi, H.; Taketani, T.; Tamura, H.; et al. Aberrant DNA methylation suppresses expression of estrogen receptor 1 (ESR1) in ovarian endometrioma. J. Ovarian Res. 2019, 12, 14. [Google Scholar]
- Montes-de-Oca-Fuentes, E.V.; Jácome-López, K.; Zarco-Mendoza, A.; Guerrero, G.; Ventura-Gallegos, J.L.; Juárez-Méndez, S.; Cabrera-Quintero, A.J.; Recillas-Targa, F.; Zentella-Dehesa, A. Differential DNA methylation and CTCF binding between the ESR1 promoter a of MCF-7 and MDA-MB-231 breast cancer cells. Mol. Biol. Rep. 2024, 51, 148. [Google Scholar]
- Lin, Z.; Liu, X.; Liu, X.; Liu, J. DNA hypermethylation of the promoter attenuates forkhead box protein 3 (FOXP3) expression in hepatocellular carcinoma cells. Transl. Cancer Res. 2019, 8, 2024–2031. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dong, Y.; Zhai, L.; Bai, Y.; Yang, Y.; Jia, L. Decreased Treg cells induced by bisphenol A is associated with up-regulation of PI3K/Akt/mTOR signaling pathway and Foxp3 DNA methylation in spleen of adolescent mice. Chemosphere 2024, 357, 141957. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R.; Richards, D.M.; Lunnon, K.; Schapira, A.H.V.; Migdalska-Richards, A. DNA Methylation of α-Synuclein Intron 1 Is Significantly Decreased in the Frontal Cortex of Parkinson’s Individuals with GBA1 Mutations. Int. J. Mol. Sci. 2023, 24, 2687. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Shivakumar, M.; Han, S.; Sinclair, M.S.; Lee, Y.J.; Zheng, Y.; Olopade, O.I.; Kim, D.; Lee, Y. Population-dependent Intron Retention and DNA Methylation in Breast Cancer. Mol. Cancer Res. 2018, 16, 461–469. [Google Scholar] [CrossRef]
- Ozaki, Y.; Yoshino, Y.; Yamazaki, K.; Sao, T.; Mori, Y.; Ochi, S.; Yoshida, T.; Mori, T.; Iga, J.I.; Ueno, S.I. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer’s disease. J. Psychiatr. Res. 2017, 92, 74–80. [Google Scholar] [CrossRef]
- Ball, M.P.; Li, J.B.; Gao, Y.; Lee, J.H.; LeProust, E.M.; Park, I.H.; Xie, B.; Daley, G.Q.; Church, G.M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 2009, 27, 361–368. [Google Scholar] [CrossRef]
- Shayevitch, R.; Askayo, D.; Keydar, I.; Ast, G. The importance of DNA methylation of exons on alternative splicing. RNA 2018, 24, 1351–1362. [Google Scholar] [CrossRef]
- Pant, D.; Narayanan, S.P.; Vijay, N.; Shukla, S. Hypoxia-induced changes in intragenic DNA methylation correlate with alternative splicing in breast cancer. J. Biosci. 2020, 45, 3. [Google Scholar] [CrossRef]
- Rancourt, R.C.; Ott, R.; Schellong, K.; Ziska, T.; Melchior, K.; Henrich, W.; Plagemann, A. Altered SOCS3 DNA methylation within exon 2 is associated with increased mRNA expression in visceral adipose tissue in gestational diabetes. Epigenetics 2021, 16, 488–494. [Google Scholar] [CrossRef]
- Chung, D.C.; Gray, D.M.; Singh, H.; Issaka, R.B.; Raymond, V.M.; Eagle, C.; Hu, S.; Chudova, D.I.; Talasaz, A.; Greenson, J.K.; et al. A Cell-free DNA Blood-Based Test for Colorectal Cancer Screening. N. Engl. J. Med. 2024, 390, 973–983. [Google Scholar] [CrossRef]
- Nie, Y.; Gao, X.; Cai, X.; Wu, Z.; Liang, Q.; Xu, G.; Liu, N.; Gao, P.; Deng, J.; Xu, H.; et al. Combining methylated SEPTIN9 and RNF180 plasma markers for diagnosis and early detection of gastric cancer. Cancer Commun. 2023, 43, 1275–1279. [Google Scholar]
- Gao, Q.; Lin, Y.P.; Li, B.S.; Wang, G.Q.; Dong, L.Q.; Shen, B.Y.; Lou, W.H.; Wu, W.C.; Ge, D.; Zhu, Q.L.; et al. Unintrusive multi-cancer detection by circulating cell-free DNA methylation sequencing (THUNDER): Development and independent validation studies. Ann. Oncol. 2023, 34, 486–495. [Google Scholar] [PubMed]
- Zhang, Q.; Hu, G.; Yang, Q.; Dong, R.; Xie, X.; Ma, D.; Shen, K.; Kong, B. A multiplex methylation-specific PCR assay for the detection of early-stage ovarian cancer using cell-free serum DNA. Gynecol. Oncol. 2013, 130, 132–139. [Google Scholar] [PubMed]
- van den Helder, R.; Wever, B.M.M.; van Trommel, N.E.; van Splunter, A.P.; Mom, C.H.; Kasius, J.C.; Bleeker, M.C.G.; Steenbergen, R.D.M. Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin. Epigenetics 2020, 12, 165. [Google Scholar]
- Grawenda, A.M.; O’Neill, E. Clinical utility of RASSF1A methylation in human malignancies. Br. J. Cancer 2015, 113, 372–381. [Google Scholar]
- Halvorsen, A.R.; Helland, A.; Fleischer, T.; Haug, K.M.; Grenaker Alnaes, G.I.; Nebdal, D.; Syljuåsen, R.G.; Touleimat, N.; Busato, F.; Tost, J.; et al. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy. Int. J. Cancer 2014, 135, 2085–2095. [Google Scholar]
- Rapado-González, Ó.; Salta, S.; López-López, R.; Henrique, R.; Suárez-Cunqueiro, M.M.; Jerónimo, C. DNA methylation markers for oral cancer detection in non- and minimally invasive samples: A systematic review. Clin. Epigenetics 2024, 16, 105. [Google Scholar]
- Koturbash, I.; Rugo, R.E.; Hendricks, C.A.; Loree, J.; Thibault, B.; Kutanzi, K.; Pogribny, I.; Yanch, J.C.; Engelward, B.P.; Kovalchuk, O. Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 2006, 25, 4267–4275. [Google Scholar] [CrossRef]
- Tharmalingam, S.; Sreetharan, S.; Kulesza, A.V.; Boreham, D.R.; Tai, T.C. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat. Res. 2017, 188, 525–538. [Google Scholar]
- Safi, S.Z.; Qvist, R.; Yan, G.O.; Ismail, I.S. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells. BMC Med. Genom. 2014, 7, 29. [Google Scholar]
- Cuozzo, C.; Porcellini, A.; Angrisano, T.; Morano, A.; Lee, B.; Di Pardo, A.; Messina, S.; Iuliano, R.; Fusco, A.; Santillo, M.R.; et al. DNA damage, homology-directed repair and DNA methylation. PLoS Genet. 2007, 3, e300. [Google Scholar]
- Meilinger, D.; Fellinger, K.; Bultmann, S.; Rothbauer, U.; Bonapace, I.M.; Klinkert, W.E.; Spada, F.; Leonhardt, H. Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep. 2009, 10, 1259–1264. [Google Scholar] [PubMed]
- Koturbash, I.; Pogribny, I.; Kovalchuk, O. Stable loss of global DNA methylation in the radiation-target tissue—A possible mechanism contributing to radiation carcinogenesis? Biochem. Biophys. Res. Commun. 2005, 337, 526–533. [Google Scholar]
- Pogribny, I.; Raiche, J.; Slovack, M.; Kovalchuk, O. Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem. Biophys. Res. Commun. 2004, 320, 1253–1261. [Google Scholar]
- Wang, J.; Zhang, Y.; Xu, K.; Mao, X.; Xue, L.; Liu, X.; Yu, H.; Chen, L.; Chu, X. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice. PLoS ONE 2014, 9, e90804. [Google Scholar]
- Nakata, A.; Sato, K.; Fujishima, Y.; Ting, V.G.S.; Nakayama, K.; Ariyoshi, K.; Tsuruoka, C.; Shang, Y.; Iizuka, D.; Kakinuma, S.; et al. Evaluation of Global DNA Methylation and Gene Expression of Izumo1 and Izumo1r in Gonads after High- and Low-Dose Radiation in Neonatal Mice. Biology 2021, 10, 1270. [Google Scholar] [CrossRef]
- Song, W.; Liu, Y.; Liu, Y.; Zhang, C.; Yuan, B.; Zhang, L.; Sun, S. Increased p16 DNA methylation in mouse thymic lymphoma induced by irradiation. PLoS ONE 2014, 9, e93850. [Google Scholar]
- Belli, M.; Tabocchini, M.A. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int. J. Mol. Sci. 2020, 21, 5993. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.; Qi, Q.; Zhang, S.; Xie, Y.; Wang, J.; Liu, S.; Ma, S.; Li, S.; Gong, T.; et al. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer. Nat. Commun. 2023, 14, 4724. [Google Scholar]
- Zheng, X.H.; Deng, C.M.; Zhou, T.; Li, X.Z.; Tang, C.L.; Jiang, C.T.; Liao, Y.; Wang, T.M.; He, Y.Q.; Jia, W.H. Saliva biopsy: Detecting the difference of EBV DNA methylation in the diagnosis of nasopharyngeal carcinoma. Int. J. Cancer 2023, 153, 882–892. [Google Scholar]
- van den Helder, R.; Steenbergen, R.D.M.; van Splunter, A.P.; Mom, C.H.; Tjiong, M.Y.; Martin, I.; Rosier-van Dunné, F.M.F.; van der Avoort, I.A.M.; Bleeker, M.C.G.; van Trommel, N.E. HPV and DNA Methylation Testing in Urine for Cervical Intraepithelial Neoplasia and Cervical Cancer Detection. Clin. Cancer Res. 2022, 28, 2061–2068. [Google Scholar] [PubMed]
- Priya, R.; Das, B. Global DNA methylation profile at LINE-1 repeats and promoter methylation of genes involved in DNA damage response and repair pathways in human peripheral blood mononuclear cells in response to γ-radiation. Mol. Cell. Biochem. 2021, 477, 267–281. [Google Scholar] [PubMed]
- Tomasik, B.; Chałubińska-Fendler, J.; Chowdhury, D.; Fendler, W. Potential of serum microRNAs as biomarkers of radiation injury and tools for individualization of radiotherapy. Transl. Res. 2018, 201, 71–83. [Google Scholar] [PubMed]
- D’Abrantes, S.; Gratton, S.; Reynolds, P.; Kriechbaumer, V.; McKenna, J.; Barnard, S.; Clarke, D.T.; Botchway, S.W. Super-Resolution Nanoscopy Imaging Applied to DNA Double-Strand Breaks. Radiat. Res. 2018, 189, 19–31. [Google Scholar]
- Chen, Z.; Wakabayashi, H.; Kuroda, R.; Mori, H.; Hiromasa, T.; Kayano, D.; Kinuya, S. Radiation exposure lymphocyte damage assessed by γ-H2AX level using flow cytometry. Sci. Rep. 2024, 14, 4339. [Google Scholar]
- Kuo, L.J.; Yang, L.X. Gamma-H2AX-a novel biomarker for DNA double-strand breaks. Vivo 2008, 22, 305–309. [Google Scholar]
- Jia, M.; Wang, Z. MicroRNAs as Biomarkers for Ionizing Radiation Injury. Front. Cell Dev. Biol. 2022, 10, 861451. [Google Scholar]
- Zhao, B.S.; Roundtree, I.A.; He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Reviews. Mol. Cell Biol. 2017, 18, 31–42. [Google Scholar]
- Templin, T.; Amundson, S.A.; Brenner, D.J.; Smilenov, L.B. Whole mouse blood microRNA as biomarkers for exposure to γ-rays and (56)Fe ion. Int. J. Radiat. Biol. 2011, 87, 653–662. [Google Scholar]
- Chen, H.; Zhao, X.; Yang, W.; Zhang, Q.; Hao, R.; Jiang, S.; Han, H.; Yu, Z.; Xing, S.; Feng, C.; et al. RNA N6-methyladenosine modification-based biomarkers for absorbed ionizing radiation dose estimation. Nat. Commun. 2023, 14, 6912. [Google Scholar]
- Chopra, S.; Shankavaram, U.; Bylicky, M.; Dalo, J.; Scott, K.; Aryankalayil, M.J.; Coleman, C.N. Profiling mRNA, miRNA and lncRNA expression changes in endothelial cells in response to increasing doses of ionizing radiation. Sci. Rep. 2022, 12, 19941. [Google Scholar]
- Ghandhi, S.A.; Smilenov, L.; Shuryak, I.; Pujol-Canadell, M.; Amundson, S.A. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci. Rep. 2019, 9, 19434. [Google Scholar]
- Sallam, M.; Mysara, M.; Benotmane, M.A.; Crijns, A.P.G.; Spoor, D.; Van Nieuwerburgh, F.; Deforce, D.; Baatout, S.; Guns, P.J.; Aerts, A.; et al. DNA Methylation Alterations in Fractionally Irradiated Rats and Breast Cancer Patients Receiving Radiotherapy. Int. J. Mol. Sci. 2022, 23, 16214. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.J.; Han, Y.K.; Kang, K.; Yi, J.M. Identification of DNA methylation biomarkers for evaluating cardiovascular disease risk from epigenome profiles altered by low-dose ionizing radiation. Clin. Epigenetics 2024, 16, 19. [Google Scholar]
- Danielsson, A.; Barreau, K.; Kling, T.; Tisell, M.; Carén, H. Accumulation of DNA methylation alterations in paediatric glioma stem cells following fractionated dose irradiation. Clin. Epigenetics 2020, 12, 26. [Google Scholar]
- Wang, Q.; Yu, G.; Ming, X.; Xia, W.; Xu, X.; Zhang, Y.; Zhang, W.; Li, Y.; Huang, C.; Xie, H.; et al. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet. 2020, 52, 828–839. [Google Scholar]
- Moquet, J.; Rothkamm, K.; Barnard, S.; Ainsbury, E. Radiation Biomarkers in Large Scale Human Health Effects Studies. J. Pers. Med. 2020, 10, 155. [Google Scholar] [CrossRef]
- Miousse, I.R.; Kutanzi, K.R.; Koturbash, I. Effects of ionizing radiation on DNA methylation: From experimental biology to clinical applications. Int. J. Radiat. Biol. 2017, 93, 457–469. [Google Scholar]
Subjects | Type of radition | Dose of radition | Conclusion |
---|---|---|---|
CHO K-1 HeLa S-3, C-i1300N1E-115, V79A03 | Acute Radition | 10 Gy | Genomic DNA methylation levels decreased in a dose-dependent manner, with genome-wide demethylation being most pronounced after 48 h |
C57/BL6J mice | Acute Radition | 4, 7, 10 Gy | Genome-wide DNA hypomethylation of stem cells was observed after 8, 24, 48, and 72 h |
Thymus of C57/BL6J mice | Acute Radition | 5 Gy | Genome-wide DNA hypomethylation, persistent |
Liver and spleen of C57/BL6J mice | Acute Radition | 0.5, 5 Gy | Genome-wide DNA hypomethylation, Dose dependence, especially in male mice |
Blood from BALB/c mice | Acute/Chronic Radition | 0.5 Gy, 0.05 Gy × 10 | Genomic hypomethylation was observed after acute and chronic exposures |
mice testis and ovary | Acute/Chronic Radition | 4 Gy (0.47 Gy/min) 4 Gy (0.1 mGymin) | LDR maintained methylation level, while HDR decreased. Izumo1 expression recovered after LDR and remained low after HDR |
Thymus of BALB/c mice | Chronic Radition | 7 Gy (1.75 Gy × 4) | Methylation of CpG sites in the p16 promoter would reduce its expression in post-radiation thymic lymphoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Zhang, Y.; Xu, J.; Yu, Y.; Zhou, P.; Liu, X.; Guan, H. Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers. Int. J. Mol. Sci. 2025, 26, 3342. https://doi.org/10.3390/ijms26073342
Ma L, Zhang Y, Xu J, Yu Y, Zhou P, Liu X, Guan H. Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers. International Journal of Molecular Sciences. 2025; 26(7):3342. https://doi.org/10.3390/ijms26073342
Chicago/Turabian StyleMa, Lanfang, Yu Zhang, Jie Xu, Yanan Yu, Pingkun Zhou, Xiuhua Liu, and Hua Guan. 2025. "Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers" International Journal of Molecular Sciences 26, no. 7: 3342. https://doi.org/10.3390/ijms26073342
APA StyleMa, L., Zhang, Y., Xu, J., Yu, Y., Zhou, P., Liu, X., & Guan, H. (2025). Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers. International Journal of Molecular Sciences, 26(7), 3342. https://doi.org/10.3390/ijms26073342