Unraveling the Immune Landscape of Chronic Obstructive Pulmonary Disease: Insights into Inflammatory Cell Subtypes, Pathogenesis, and Treatment Strategies
Abstract
:1. Introduction
2. Methods
3. Results
3.1. The Role of Neutrophils in COPD
3.1.1. Neutrophilic Inflammation in COPD Pathogenesis
3.1.2. Clinical Studies of Neutrophils in COPD
3.1.3. Potential Therapeutic Targets for Neutrophilic Inflammation in COPD
3.2. The Role of Lymphocytes in COPD
3.2.1. Lymphocytic Inflammation in COPD Pathogenesis
3.2.2. Clinical Studies of Lymphocytes in COPD
3.2.3. Potential Therapeutic Targets for Lymphocytic Inflammation in COPD
3.3. The Role of Monocytes in COPD
3.3.1. Monocytic Inflammation in COPD Pathogenesis
3.3.2. Clinical Studies of Monocytes in COPD
3.3.3. Potential Therapeutic Targets for Monocytic Inflammation in COPD
3.4. The Role of Eosinophils in COPD
3.4.1. Eosinophilic Inflammation in COPD Pathogenesis
3.4.2. Clinical Studies of Eosinophils in COPD
3.4.3. Potential Therapeutic Targets for Eosinophilic Inflammation in COPD
3.5. The Role of Basophils in COPD
3.5.1. Basophilic Inflammation in COPD Pathogenesis
3.5.2. Clinical Studies of Basophils in COPD
3.5.3. Potential Therapeutic Targets in Basophilic Inflammation in COPD
4. Overview of Leukocyte Subtypes in COPD Pathogenesis
5. Clinical Implications
6. Limitations of This Review
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, S.; Chen, Y. The Role of Bioactive Small Molecules in COPD Pathogenesis. COPD 2024, 21, 2307618. [Google Scholar] [CrossRef] [PubMed]
- Raby, K.L.; Michaeloudes, C.; Tonkin, J.; Chung, K.F.; Bhavsar, P.K. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front. Immunol. 2023, 14, 1201658. [Google Scholar]
- Mathur, A.; Tripathi, A.S.; Kuse, M. Scalable system for classification of white blood cells from Leishman stained blood stain images. J. Pathol. Inform. 2013, 4, S15. [Google Scholar] [CrossRef]
- Ham, J.; Kim, J.; Ko, Y.G.; Kim, H.Y. The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. Allergy Asthma Immunol. Res. 2022, 14, 361–378. [Google Scholar]
- Cheetham, C.J.; McKelvey, M.C.; McAuley, D.F.; Taggart, C.C. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int. J. Mol. Sci. 2024, 25, 5492. [Google Scholar] [CrossRef]
- Katsoulis, O.; Toussaint, M.; Jackson, M.M.; Mallia, P.; Footitt, J.; Mincham, K.T.; Meyer, G.F.M.; Kebadze, T.; Gilmour, A.; Long, M.; et al. Neutrophil extracellular traps promote immunopathogenesis of virus-induced COPD exacerbations. Nat. Commun. 2024, 15, 5766. [Google Scholar] [CrossRef]
- Wen, X.; Deng, Z.; Peng, J.; Yang, H.; Wu, F.; Dai, C.; Zheng, Y.; Zhao, N.; Wang, Z.; Xiao, S.; et al. Characteristics of inflammatory phenotypes in patients with chronic obstructive pulmonary disease: A cross-sectional study. BMJ Open Respir. Res. 2023, 10, e001454. [Google Scholar] [CrossRef]
- Yang, H.; Wen, X.; Wu, F.; Zheng, Y.; Dai, C.; Zhao, N.; Deng, Z.; Wang, Z.; Peng, J.; Xiao, S.; et al. Inter-relationships among neutrophilic inflammation, air trapping and future exacerbation in COPD: An analysis of ECOPD study. BMJ Open Respir. Res. 2023, 10, e001597. [Google Scholar]
- Bartoli, M.L.; Costa, F.; Malagrinò, L.; Nieri, D.; Antonelli, S.; Decusatis, G.; Simone, C.D.; Santerini, S.; Cianchetti, S.; Latorre, M.; et al. Sputum inflammatory cells in COPD patients classified according to GOLD 2011 guidelines. Eur. Respir. J. 2016, 47, 978–980. [Google Scholar]
- Deng, F.; Zhong, S.; Yu, C.; Zhao, H.; Huang, H.; Meng, X.; Lin, C.; Cai, S. Abnormal neutrophil polarization in chronic obstructive pulmonary disease and how cigarette smoke extracts attract neutrophils. Ann. Transl. Med. 2022, 10, 472. [Google Scholar]
- Kandemir, Y.; Doğan, N.; Yaka, E.; Pekdemir, M.; Yılmaz, S. Clinical characteristics of neutrophilic, eosinophilic and mixed-type exacerbation phenotypes of COPD. Am. J. Emerg. Med. 2021, 45, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Milara, J.; Contreras, S.; de Diego, A.; Calbet, M.; Aparici, M.; Morcillo, E.; Miralpeix, M.; Cortijo, J. In vitro anti-inflammatory effects of AZD8999, a novel bifunctional muscarinic acetylcholine receptor antagonist/β2-adrenoceptor agonist (MABA) compound in neutrophils from COPD patients. PLoS ONE 2019, 14, e0210188. [Google Scholar] [CrossRef]
- Mattos, M.S.; Ferrero, M.R.; Kraemer, L.; Lopes, G.A.O.; Reis, D.C.; Cassali, G.D.; Oliveira, F.M.S.; Brandolini, L.; Allegretti, M.; Garcia, C.C.; et al. CXCR1 and CXCR2 Inhibition by Ladarixin Improves Neutrophil-Dependent Airway Inflammation in Mice. Front. Immunol. 2020, 11, 566953. [Google Scholar] [CrossRef] [PubMed]
- Dunne, A.E.; Kawamatawong, T.; Fenwick, P.S.; Davies, C.M.; Tullett, H.; Barnes, P.J.; Donnelly, L.E. Direct Inhibitory Effect of the PDE4 Inhibitor Roflumilast on Neutrophil Migration in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2019, 60, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Y.; Wang, Z.G.; Gao, Y.; Zhang, H.M.; Zhang, Y.X.; Wang, X.J.; Peng, D. Effect and safety of roflumilast for chronic obstructive pulmonary disease in Chinese patients. Medicine 2018, 97, e9864. [Google Scholar] [CrossRef]
- Martinez, F.J.; Rabe, K.F.; Sethi, S.; Pizzichini, E.; McIvor, A.; Anzueto, A.; Alagappan, V.K.; Siddiqui, S.; Rekeda, L.; Miller, C.J.; et al. Effect of Roflumilast and Inhaled Corticosteroid/Long-Acting β2-Agonist on Chronic Obstructive Pulmonary Disease Exacerbations (RE(2)SPOND). A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 559–567. [Google Scholar] [CrossRef]
- Rennard, S.I.; Dale, D.C.; Donohue, J.F.; Kanniess, F.; Magnussen, H.; Sutherland, E.R.; Watz, H.; Lu, S.; Stryszak, P.; Rosenberg, E.; et al. CXCR2 Antagonist MK-7123. A Phase 2 Proof-of-Concept Trial for Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2015, 191, 1001–1011. [Google Scholar] [CrossRef]
- Williams, M.; Todd, I.; Fairclough, L.C. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: A systematic review. Inflamm. Res. 2021, 70, 11–18. [Google Scholar] [CrossRef]
- Qin, K.; Xu, B.; Pang, M.; Wang, H.; Yu, B. The functions of CD4 T-helper lymphocytes in chronic obstructive pulmonary disease. Acta Biochim. Biophys. Sin. 2022, 54, 173–178. [Google Scholar] [CrossRef]
- Polverino, F.; Seys, L.J.; Bracke, K.R.; Owen, C.A. B cells in chronic obstructive pulmonary disease: Moving to center stage. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L687–L695. [Google Scholar] [CrossRef]
- Eapen, M.S.; McAlinden, K.; Tan, D.; Weston, S.; Ward, C.; Muller, H.K.; Walters, E.H.; Sohal, S.S. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD. Respirology 2017, 22, 1125–1132. [Google Scholar] [PubMed]
- Chen, C.; Shen, Y.; Ni, C.J.; Zhu, Y.H.; Huang, J.A. Imbalance of circulating T-lymphocyte subpopulation in COPD and its relationship with CAT performance. J. Clin. Lab. Anal. 2012, 26, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Su, H.; Jiao, K.; Liu, J. Association Between IL-17 and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 1681–1690. [Google Scholar] [CrossRef]
- Acanfora, D.; Scicchitano, P.; Carone, M.; Acanfora, C.; Piscosquito, G.; Maestri, R.; Zito, A.; Dentamaro, I.; Longobardi, M.; Casucci, G.; et al. Relative lymphocyte count as an indicator of 3-year mortality in elderly people with severe COPD. BMC Pulm. Med. 2018, 18, 116. [Google Scholar]
- Hu, Y.; Long, H.; Cao, Y.; Guo, Y. Prognostic value of lymphocyte count for in-hospital mortality in patients with severe AECOPD. BMC Pulm. Med. 2022, 22, 376. [Google Scholar] [CrossRef]
- Uzunlar, E.A.; Yildiran, H.; Kokturk, N.; Kilic, H.; Hasanoglu, H.C. Obesity, Charlson comorbidity index, and neutrophil-to-lymphocyte ratio in chronic obstructive pulmonary disease: Relationship to disease severity. Bratisl. Lek. Listy. 2023, 124, 520–526. [Google Scholar]
- Lan, C.C.; Su, W.L.; Yang, M.C.; Chen, S.Y.; Wu, Y.K. Predictive role of neutrophil-percentage-to-albumin, neutrophil-to-lymphocyte and eosinophil-to-lymphocyte ratios for mortality in patients with COPD: Evidence from NHANES 2011–2018. Respirology 2023, 28, 1136–1146. [Google Scholar] [CrossRef]
- Taylan, M.; Demir, M.; Kaya, H.; Selimoglu Sen, H.; Abakay, O.; Carkanat, A.; Abakay, A.; Tanrikulu, A.C.; Sezgi, C. Alterations of the neutrophil-lymphocyte ratio during the period of stable and acute exacerbation of chronic obstructive pulmonary disease patients. Clin. Respir. J. 2017, 11, 311–317. [Google Scholar]
- Fayiad, H.; Amer, A.M. Predictive role of platelets to lymphocytes ratio and neutrophil to lymphocytes ratio in COPD exacerbation. Egypt. J. Intern. Med. 2024, 36, 71. [Google Scholar]
- Yao, Y.; Zhou, J.; Diao, X.; Wang, S. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: A systematic review and meta-analysis. Ther. Adv. Respir. Dis. 2019, 13, 1753466619866096. [Google Scholar]
- Cazzola, M.; Ora, J.; Cavalli, F.; Rogliani, P.; Matera, M.G. An Overview of the Safety and Efficacy of Monoclonal Antibodies for the Chronic Obstructive Pulmonary Disease. Biologics 2021, 15, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; Patel, N.; et al. Dupilumab for COPD with Blood Eosinophil Evidence of Type 2 Inflammation. N. Engl. J. Med. 2024, 390, 2274–2283. [Google Scholar] [CrossRef] [PubMed]
- Reid, F.; Singh, D.; Albayaty, M.; Moate, R.; Jimenez, E.; Sadiq, M.W.; Howe, D.; Gavala, M.; Killick, H.; Williams, A.; et al. A Randomized Phase I Study of the Anti-Interleukin-33 Antibody Tozorakimab in Healthy Adults and Patients with Chronic Obstructive Pulmonary Disease. Clin. Pharmacol. Ther. 2024, 115, 565–575. [Google Scholar] [PubMed]
- Aegerter, H.; Lambrecht, B.N.; Jakubzick, C.V. Biology of lung macrophages in health and disease. Immunity 2022, 55, 1564–1580. [Google Scholar]
- Ono, Y.; Fujino, N.; Saito, T.; Matsumoto, S.; Konno, S.; Endo, T.; Suzuki, M.; Yamada, M.; Okada, Y.; Sugiura, H. Characterization of IL-6R-expressing monocytes in the lung of patients with chronic obstructive pulmonary disease. Respir. Investig. 2024, 62, 856–866. [Google Scholar] [CrossRef]
- Lin, C.H.; Li, Y.R.; Lin, P.R.; Wang, B.Y.; Lin, S.H.; Huang, K.Y.; Kor, C.T. Blood monocyte levels predict the risk of acute exacerbations of chronic obstructive pulmonary disease: A retrospective case-control study. Sci. Rep. 2022, 12, 21057. [Google Scholar]
- Rodríguez-Guzmán, M.J.; Peces-Barba Romero, G.; Pérez Rial, S.; Serrano Del Castillo, C.; Palomero Rodríguez, M.; Mahillo-Fernandez, I.; Villar-Álvarez, F. Elevated levels of arginase activity are related to inflammation in patients with COPD exacerbation. BMC Pulm. Med. 2021, 21, 271. [Google Scholar]
- Cai, C.; Zeng, W.; Wang, H.; Ren, S. Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Monocyte-to-Lymphocyte Ratio (MLR) as Biomarkers in Diagnosis Evaluation of Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Retrospective, Observational Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2024, 19, 933–943. [Google Scholar] [CrossRef]
- Hodge, S.; Hodge, G.; Scicchitano, R.; Reynolds, P.N.; Holmes, M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol. 2003, 81, 289–296. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, J.; Wang, J.; Li, S.; Fukunaga, A.; Yodoi, J.; Tian, H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct. Target. Ther. 2020, 5, 248. [Google Scholar]
- Dong, Y.; Dong, Y.; Zhu, C.; Yang, L.; Wang, H.; Li, J.; Zheng, Z.; Zhao, H.; Xie, W.; Chen, M.; et al. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis. Cell Commun. Signal. 2024, 22, 364. [Google Scholar] [PubMed]
- Fekri, M.S.; Najminejad, Z.; Karami Robati, F.; Dalfardi, B.; Lashkarizadeh, M.; Najafzadeh, M.J. Eosinophils and chronic obstructive pulmonary diseases (COPD) in hospitalized COVID-19 patients. BMC Infect. Dis. 2024, 24, 553. [Google Scholar]
- Higham, A.; Beech, A.; Singh, D. The relevance of eosinophils in chronic obstructive pulmonary disease: Inflammation, microbiome and clinical outcomes. J. Leukoc. Biol. 2024, 116, 927–946. [Google Scholar]
- Ferrari, M.; Pizzini, M.; Cazzoletti, L.; Ermon, V.; Spelta, F.; De Marchi, S.; Carbonare, L.G.D.; Crisafulli, E. Circulating eosinophil levels and lung function decline in stable chronic obstructive pulmonary disease: A retrospective longitudinal study. J. Bras Pneumol. 2022, 48, e20220183. [Google Scholar]
- Tan, W.C.; Bourbeau, J.; Nadeau, G.; Wang, W.; Barnes, N.; Landis, S.H.; Kirby, M.; Hogg, J.C.; Sin, D.D. High eosinophil counts predict decline in FEV(1): Results from the CanCOLD study. Eur. Respir. J. 2021, 57, 2000838. [Google Scholar]
- Chan, M.C.; Yeung, Y.C.; Yu, E.L.M.; Yu, W.C. Blood Eosinophil and Risk of Exacerbation in Chronic Obstructive Pulmonary Disease Patients: A Retrospective Cohort Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 2869–2877. [Google Scholar]
- Chen, F.; Yang, M.; Wang, H.; Liu, L.; Shen, Y.; Chen, L. High blood eosinophils predict the risk of COPD exacerbation: A systematic review and meta-analysis. PLoS ONE 2024, 19, e0302318. [Google Scholar]
- Lin, P.; Shen, C.; Li, Q.; Huang, Y.; Zhou, J.; Lu, Y.; He, A.; Liu, X.; Luo, M. A systematic review and meta-analysis of chronic obstructive pulmonary disease in asia: Risk factors for readmission and readmission rate. BMC Pulm. Med. 2024, 24, 388. [Google Scholar]
- Cheng, S.L. Blood eosinophils and inhaled corticosteroids in patients with COPD: Systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2775–2784. [Google Scholar]
- Cui, Y.; Zhan, Z.; Zeng, Z.; Huang, K.; Liang, C.; Mao, X.; Zhang, Y.; Ren, X.; Yang, T.; Chen, Y. Blood Eosinophils and Clinical Outcomes in Patients With Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Propensity Score Matching Analysis of Real-World Data in China. Front. Med. 2021, 8, 653777. [Google Scholar]
- Donovan, T.; Milan, S.J.; Wang, R.; Banchoff, E.; Bradley, P.; Crossingham, I. Anti-IL-5 therapies for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2020, 12, Cd013432. [Google Scholar] [PubMed]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Cole, J.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F.; Celli, B.R.; Wechsler, M.E.; Abdulai, R.M.; Luo, X.; Boomsma, M.M.; Staudinger, H.; Horowitz, J.E.; Baras, A.; Ferreira, M.A.; et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: A genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir. Med. 2021, 9, 1288–1298. [Google Scholar] [CrossRef]
- Shibata, S.; Miyake, K.; Tateishi, T.; Yoshikawa, S.; Yamanishi, Y.; Miyazaki, Y.; Inase, N.; Karasuyama, H. Basophils trigger emphysema development in a murine model of COPD through IL-4-mediated generation of MMP-12-producing macrophages. Proc. Natl. Acad. Sci. USA 2018, 115, 13057–13062. [Google Scholar] [CrossRef]
- Marone, G.; Triggiani, M.; de Paulis, A. Mast cells and basophils: Friends as well as foes in bronchial asthma? Trends Immunol. 2005, 26, 25–31. [Google Scholar] [CrossRef]
- Jogdand, P.; Siddhuraj, P.; Mori, M.; Sanden, C.; Jönsson, J.; Walls, A.F.; Kearley, J.; Humbles, A.A.; Kolbeck, R.; Bjermer, L.; et al. Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue. Eur. Respir. J. 2020, 55, 1900110. [Google Scholar] [CrossRef]
- Winter, N.A.; Gibson, P.G.; McDonald, V.M.; Fricker, M. Sputum Gene Expression Reveals Dysregulation of Mast Cells and Basophils in Eosinophilic COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2165–2179. [Google Scholar] [CrossRef]
- Sridhar, S.; Liu, H.; Pham, T.H.; Damera, G.; Newbold, P. Modulation of blood inflammatory markers by benralizumab in patients with eosinophilic airway diseases. Respir. Res. 2019, 20, 14. [Google Scholar] [CrossRef]
- Liang, X.; Liu, T.; Zhang, Z.; Yu, Z. Airway Inflammation Biomarker for Precise Management of Neutrophil-Predominant COPD. Methods Mol. Biol. 2020, 2204, 181–191. [Google Scholar]
- El-Gazzar, A.G.; Kamel, M.H.; Elbahnasy, O.K.M.; El-Naggar, M.E. Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients. Expert Rev. Respir. Med. 2020, 14, 111–116. [Google Scholar] [CrossRef]
Leukocyte Subtypes | Clinical Significance |
---|---|
Neutrophils |
|
Lymphocytes |
|
Neutrophil-to-lymphocyte ratio (NLR) |
|
Monocytes |
|
Monocyte-to-lymphocyte ratio (MLR) |
|
Eosinophils |
|
Basophils |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, C.-C.; Yang, M.-C.; Su, W.-L.; Huang, K.-L.; Lin, C.-C.; Huang, Y.-C.; Huang, C.-Y.; Chen, H.-Y.; Wu, C.-W.; Lee, C.; et al. Unraveling the Immune Landscape of Chronic Obstructive Pulmonary Disease: Insights into Inflammatory Cell Subtypes, Pathogenesis, and Treatment Strategies. Int. J. Mol. Sci. 2025, 26, 3365. https://doi.org/10.3390/ijms26073365
Lan C-C, Yang M-C, Su W-L, Huang K-L, Lin C-C, Huang Y-C, Huang C-Y, Chen H-Y, Wu C-W, Lee C, et al. Unraveling the Immune Landscape of Chronic Obstructive Pulmonary Disease: Insights into Inflammatory Cell Subtypes, Pathogenesis, and Treatment Strategies. International Journal of Molecular Sciences. 2025; 26(7):3365. https://doi.org/10.3390/ijms26073365
Chicago/Turabian StyleLan, Chou-Chin, Mei-Chen Yang, Wen-Lin Su, Kuo-Liang Huang, Ching-Chi Lin, Yi-Chih Huang, Chun-Yao Huang, Hsin-Yi Chen, Chih-Wei Wu, Chung Lee, and et al. 2025. "Unraveling the Immune Landscape of Chronic Obstructive Pulmonary Disease: Insights into Inflammatory Cell Subtypes, Pathogenesis, and Treatment Strategies" International Journal of Molecular Sciences 26, no. 7: 3365. https://doi.org/10.3390/ijms26073365
APA StyleLan, C.-C., Yang, M.-C., Su, W.-L., Huang, K.-L., Lin, C.-C., Huang, Y.-C., Huang, C.-Y., Chen, H.-Y., Wu, C.-W., Lee, C., Jao, L.-Y., & Wu, Y.-K. (2025). Unraveling the Immune Landscape of Chronic Obstructive Pulmonary Disease: Insights into Inflammatory Cell Subtypes, Pathogenesis, and Treatment Strategies. International Journal of Molecular Sciences, 26(7), 3365. https://doi.org/10.3390/ijms26073365