Plasmon-Enhanced Visible and Near-Infrared Photodetection with Gold Nanorods UCNPs/MoS2 Hybrid Device
Abstract
:1. Introduction
2. Results and Discussion
3. Methods and Materials
3.1. Materials Preparation
3.2. Device Fabrication
3.3. Characterizations and Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Liu, H.; Zhang, Z.; Hu, K.; Fang, X. Nanostructured Photodetectors: From Ultraviolet to Terahertz. Adv. Mater. 2015, 28, 403–433. [Google Scholar]
- Wang, F.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J.; Han, W.; Liu, K.; Li, H.; Zhai, T. 2D Metal Chalcogenides for IR Photodetection. Small 2019, 15, 1901347. [Google Scholar]
- Wang, X.; Shen, H.; Chen, Y.; Wu, G.; Wang, P.; Xia, H.; Lin, T.; Zhou, P.; Hu, W.; Meng, X.; et al. Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 µm. Adv. Sci. 2019, 6, 1901050. [Google Scholar]
- Qiu, Q.; Huang, Z. Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Li, H.; Chen, Z.; Xu, J. Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction. ACS Photonics 2016, 3, 692–699. [Google Scholar] [CrossRef]
- Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S.B. Recent Progress on Stability and Passivation of Black Phosphorus. Adv. Mater. 2018, 30, 1704749. [Google Scholar]
- Gorris, H.H.; Wolfbeis, O.S. Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres. Angew. Chem. Int. Ed. 2013, 52, 3584–3600. [Google Scholar]
- Rodin, A.S.; Carvalho, A.; Castro Neto, A.H. Strain-Induced Gap Modification in Black Phosphorus. Phys. Rev. Lett. 2014, 112, 176801. [Google Scholar]
- Chen, L.C.; Wang, L.J.; Martin, C.E.; Lin, T.C. Mediation of stemflow water and nutrient availabilities by epiphytes growing above other epiphytes in a subtropical forest. Ecohydrology 2019, 12, e2140. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Buron, J.D.; Pizzocchero, F.; Jepsen, P.U.; Petersen, D.H.; Caridad, J.M.; Jessen, B.S.; Booth, T.J.; Bøggild, P. Graphene mobility mapping. Sci. Rep. 2015, 5, 12305. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, X.; Deng, B.; Sinai, O.; Shao, Y.; Li, C.; Yuan, S.; Tran, V.; Watanabe, K.; Taniguchi, T.; et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A. Black Phosphorus: Narrow Gap, Wide Applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291. [Google Scholar] [CrossRef]
- Cheng, Q.; Pang, J.; Sun, D.; Wang, J.; Zhang, S.; Liu, F.; Chen, Y.; Yang, R.; Liang, N.; Lu, X.; et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications. InfoMat 2020, 2, 656–697. [Google Scholar]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [PubMed]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Basic understanding of the lanthanide related upconversion emissions. Nanoscale 2013, 5, 5703–5714. [Google Scholar]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar]
- Sun, L.-D.; Dong, H.; Zhang, P.-Z.; Yan, C.-H. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. 2015, 66, 619–642. [Google Scholar] [PubMed]
- Yi, G.S.; Chow, G.M. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329. [Google Scholar]
- Niu, W.; Chen, H.; Chen, R.; Huang, J.; Sun, H.; Tok, A.I.Y. NaYF4:Yb,Er–MoS2: From synthesis and surface ligand stripping to negative infrared photoresponse. Chem. Commun. 2015, 51, 9030–9033. [Google Scholar]
- Zhou, N.; Xu, B.; Gan, L.; Zhang, J.; Han, J.; Zhai, T. Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device. J. Mater. Chem. C 2017, 5, 1591–1595. [Google Scholar]
- Ghosh, S.; Chiang, W.C.; Fakhri, M.Y.; Wu, C.T.; Chen, R.S.; Chattopadhyay, S. Ultrasensitive broadband photodetector using electrostatically conjugated MoS2-upconversion nanoparticle nanocomposite. Nano Energy 2020, 67, 104258. [Google Scholar]
- Tomar, D.S.; Ghosh, S.; Wu, C.T.; Quadir, S.; Chen, L.C.; Chen, K.H.; Chattopadhyay, S. Graphene-coated substrate-mediated photoresponse from MoS2/UCNP nanohybrid-based photodetectors. ACS Appl. Electron. Mater. 2022, 4, 5475–5486. [Google Scholar]
- Zhang, Y.-F.; Wang, J.-H.; Chen, M.; Ding, S.-J.; Luo, Z.-J.; Lin, Y.-J.; Wang, Y.-L.; Yu, X.-F.; Hao, Z.-H.; Zhou, L.; et al. Plasmon-Enhanced Fluorescence of Rare Earth Nanocrystals. In Reviews in Plasmonics 2016; Springer: Cham, Switzerland, 2017; pp. 15–37. [Google Scholar]
- Hwang, J.-H.; Park, S.; Son, J.; Park, J.W.; Nam, J.-M. DNA-engineerable ultraflat-faceted core–shell nanocuboids with strong, quantitative plasmon-enhanced fluorescence signals for sensitive, reliable microRNA detection. Nano Lett. 2021, 21, 2132–2140. [Google Scholar]
- Fang, J.; Wang, D.; DeVault, C.T.; Chung, T.-F.; Chen, Y.P.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Enhanced Graphene Photodetector with Fractal Metasurface. Nano Lett. 2017, 17, 57–62. [Google Scholar]
- Curulli, A.; Bianchini, C.; Zane, D. Electrochemical Sensing Platform Based on Single-Walled Carbon Nanotubes (SWCNTs)/Gold Nanoparticles (AuNps) Nanocomposite. Electrocatalysis 2012, 3, 30–38. [Google Scholar]
- Blaudeck, T.; Preuß, A.; Scharf, S.; Notz, S.; Kossmann, A.; Hartmann, S.; Kasper, L.; Mendes, R.G.; Gemming, T.; Hermann, S.; et al. Photosensitive Field-Effect Transistors Made from Semiconducting Carbon Nanotubes and Non-Covalently Attached Gold Nanoparticles. Phys. Status Solidi (A) 2019, 216, 1900030. [Google Scholar]
- Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Wee, A.T.S. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers. ACS Nano 2014, 8, 8653–8661. [Google Scholar] [PubMed]
- Govorov, A.O.; Zhang, H.; Demir, H.V.; Gun’ko, Y.K. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 2014, 9, 85–101. [Google Scholar]
- Yu, T.; Rodriguez, F.; Schedin, F.; Kravets, V.G.; Zenin, V.A.; Bozhevolnyi, S.I.; Novoselov, K.S.; Grigorenko, A.N. Nanoscale light field imaging with graphene. Commun. Mater. 2022, 3, 40. [Google Scholar]
- Meng, Y.; Huang, D.; Li, H.; Feng, X.; Li, F.; Liang, Q.; Ma, T.; Han, J.; Tang, J.; Chen, G.; et al. Bright single-nanocrystal upconversion at sub 0.5 W cm−2 irradiance via coupling to single nanocavity mode. Nat. Photonics 2023, 17, 73–81. [Google Scholar]
- Ye, X.; Collins, J.E.; Kang, Y.; Chen, J.; Chen, D.T.N.; Yodh, A.G.; Murray, C.B. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 22430–22435. [Google Scholar] [PubMed]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar]
- Yu, Y.; Li, C.; Liu, Y.; Su, L.; Zhang, Y.; Cao, L. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Sci. Rep. 2013, 3, 1866. [Google Scholar]
- Scheuschner, N.; Ochedowski, O.; Kaulitz, A.-M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of freestanding single- and few-layer MoS2. Phys. Rev. B 2014, 89, 125406. [Google Scholar]
- Kang, F.; He, J.; Sun, T.; Bao, Z.Y.; Wang, F.; Lei, D.Y. Plasmonic Dual-Enhancement and Precise Color Tuning of Gold Nanorod@SiO2 Coupled Core–Shell–Shell Upconversion Nanocrystals. Adv. Funct. Mater. 2017, 27, 1701842. [Google Scholar]
- Hafeez, M.; Gan, L.; Li, H.; Ma, Y.; Zhai, T. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301. [Google Scholar]
- Kumar, A.; Ahluwalia, P.K. A first principle Comparative study of electronic and optical properties of 1H—MoS2 and 2H—MoS2. Mater. Chem. Phys. 2012, 135, 755–761. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, B.; Shao, J.; Deng, J.; Cong, C.; Hu, L.; Tian, P.; Liu, R.; Zhang, S.-L.; et al. Extending the Spectral Responsivity of MoS2 Phototransistors by Incorporating Up-Conversion Microcrystals. Adv. Opt. Mater. 2018, 6, 1800660. [Google Scholar] [CrossRef]
- Zhang, T.-F.; Li, Z.-P.; Wang, J.-Z.; Kong, W.-Y.; Wu, G.-A.; Zheng, Y.-Z.; Zhao, Y.-W.; Yao, E.-X.; Zhuang, N.-X.; Luo, L.-B. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci. Rep. 2016, 6, 38569. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, S.J.; Nam, J.H.; Pitner, G.; Lee, T.H.; Ayzner, A.L.; Wang, H.; Fong, S.W.; Vosgueritchian, M.; Park, Y.J.; et al. Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Single-Walled Carbon Nanotube/C60 Phototransistor. Adv. Mater. 2015, 27, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lim, J.; Lee, S.; Kang, M.H.; Song, W.; Lim, J.; Lee, S.; Kim, E.K.; Park, J.K.; Myung, S. Flexible hybrid photodetector based on silver sulfide nanoparticles and multi-walled carbon nanotubes. RSC Adv. 2021, 11, 22625–22632. [Google Scholar] [CrossRef]
- Sun, X.; Sun, J.; Xu, J.; Li, Z.; Li, R.; Yang, Z.; Ren, F.; Jia, Y.; Chen, F. A Plasmon-Enhanced SnSe2 Photodetector by Non-Contact Ag Nanoparticles. Small 2021, 17, 2102351. [Google Scholar] [CrossRef]
- Rohizat, N.S.; Ripain, A.H.A.; Lim, C.S.; Tan, C.L.; Zakaria, R. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS–NIR region. Sci. Rep. 2021, 11, 19688. [Google Scholar] [CrossRef]
- Sahu, D.; Debnath, S.; Ghosal, S.; Giri, P.K. 2D Printed Plasmonic Nanoparticle Array Incorporated Formamidinium-Based High-Performance Self-Biased Perovskite Photodetector. ACS Appl. Mater. Interfaces 2024, 16, 49544–49555. [Google Scholar] [CrossRef]
- Selamneni, V.; Mukherjee, A.; Raghavan, H.; Gomathi, P.T.; Kolli, C.S.R.; Pal, S.; Hazra, A.; Sahatiya, P. Plasmonic Au Nanoparticles Coated on ReS2 Nanosheets for Visible-Near-Infrared Photodetectors. ACS Appl. Nano Mater. 2022, 5, 11381–11390. [Google Scholar] [CrossRef]
- Lin, F.; Cui, J.; Zhang, Z.; Wei, Z.; Hou, X.; Meng, B.; Liu, Y.; Tang, J.; Li, K.; Liao, L.; et al. GaAs Nanowire Photodetectors Based on Au Nanoparticles Modification. Materials 2023, 16, 1735. [Google Scholar] [CrossRef]
- Varasteanu, P.; Radoi, A.; Tutunaru, O.; Ficai, A.; Pascu, R.; Kusko, M.; Mihalache, I. Plasmon-Enhanced Photoresponse of Self-Powered Si Nanoholes Photodetector by Metal Nanowires. Nanomaterials 2021, 11, 2460. [Google Scholar] [CrossRef] [PubMed]
- Bednarkiewicz, A.; Mączka, M.; Strek, W.; Hanuza, J.; Karbowiak, M. Size dependence on infrared spectra of NaGdF4 nanocrystals. Chem. Phys. Lett. 2006, 418, 75–78. [Google Scholar]
- Wilhelm, S.; Hirsch, T.; Patterson, W.M.; Scheucher, E.; Mayr, T.; Wolfbeis, O.S. Multicolor Upconversion Nanoparticles for Protein Conjugation. Theranostics 2013, 3, 239–248. [Google Scholar] [PubMed]
- Shan, J.; Uddi, M.; Yao, N.; Ju, Y. Anomalous Raman Scattering of Colloidal Yb3+, Er3+ Codoped NaYF4 Nanophosphors and Dynamic Probing of the Upconversion Luminescence. Adv. Funct. Mater. 2010, 20, 3530–3537. [Google Scholar]
Material | R (mA/W) | D* (×109 Jones) | Rise Time (s) | Wavelength (nm) | Ref. |
---|---|---|---|---|---|
MoS2/UCMCs | 0.1 | 0.1 | / | 980 | [43] |
Monolayer MoS2/UCNPs | 10.5 | / | 7.9 | 980 | [24] |
SLG-CNTF device | 209 | 48.7 | 6.8 × 10−6 | 980 | [44] |
SWNTs/C60 phototransistor | 1.94 × 104 | 1.17 | 2 × 10−3 | / | [45] |
CNT–ANs (Ag2S NPs) | 8.3 × 103 | 17 | / | White light | [46] |
SnSe2/Ag NP: SiO2 | 194.4 | / | / | 405 | [47] |
Ag-rGO | 1.423 × 104 | 717 | / | 682 | [48] |
Ag NPs/formamidinium-based perovskite | 1.03 | 3.7 × 103 | / | / | [49] |
Au NPs/ReS2 | 1.3 | 7.27 × 102 | 0.2 | 780 | [50] |
GaAs NW/AuNPs/ | 3.047 × 103 | / | / | 532 | [51] |
Au NWs/SiNHs | 15 | / | 0.339 | 650 | [52] |
Au NRs/UCNPs/MoS2 | 2.3 × 104 | / | 7.8 | 450 | This work |
Au NRs/UCNPs/MoS2 | 0.92 | / | 0.72 | 980 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Lv, B.; Zhang, M.; Zhang, X.; Yan, X.; Cai, J.; Yang, Y.; Yu, T. Plasmon-Enhanced Visible and Near-Infrared Photodetection with Gold Nanorods UCNPs/MoS2 Hybrid Device. Int. J. Mol. Sci. 2025, 26, 3480. https://doi.org/10.3390/ijms26083480
Wei H, Lv B, Zhang M, Zhang X, Yan X, Cai J, Yang Y, Yu T. Plasmon-Enhanced Visible and Near-Infrared Photodetection with Gold Nanorods UCNPs/MoS2 Hybrid Device. International Journal of Molecular Sciences. 2025; 26(8):3480. https://doi.org/10.3390/ijms26083480
Chicago/Turabian StyleWei, Haitao, Bowen Lv, Mengya Zhang, Xiangzhe Zhang, Xingheng Yan, Junhao Cai, Yaping Yang, and Tongcheng Yu. 2025. "Plasmon-Enhanced Visible and Near-Infrared Photodetection with Gold Nanorods UCNPs/MoS2 Hybrid Device" International Journal of Molecular Sciences 26, no. 8: 3480. https://doi.org/10.3390/ijms26083480
APA StyleWei, H., Lv, B., Zhang, M., Zhang, X., Yan, X., Cai, J., Yang, Y., & Yu, T. (2025). Plasmon-Enhanced Visible and Near-Infrared Photodetection with Gold Nanorods UCNPs/MoS2 Hybrid Device. International Journal of Molecular Sciences, 26(8), 3480. https://doi.org/10.3390/ijms26083480