Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases
Abstract
:1. Introduction
2. Non-Integrin Laminin Receptors
2.1. Dystroglycan
2.2. 67-kDa Laminin Receptor
2.3. Syndecans
2.4. Lutheran/Basal Cell Adhesion Molecule
2.5. Melanoma Cell Adhesion Molecule
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021, 288, 6845–7263. [Google Scholar] [CrossRef] [PubMed]
- Givant-Horwitz, V.; Davidson, B.; Reich, R. Laminin-induced signaling in tumor cells. Cancer Lett. 2005, 223, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aumailley, M.; Bruckner-Tuderman, L.; Carter, W.G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J.C.; et al. A simplified laminin nomenclature. Matrix Biol. 2005, 24, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Aumailley, M. The laminin family. Cell Adhes. Migr. 2012, 7, 48–55. [Google Scholar] [CrossRef]
- Halder, S.K.; Sapkota, A.; Milner, R. The importance of laminin at the blood-brain barrier. Neural Regen. Res. 2023, 18, 2557–2563. [Google Scholar] [CrossRef]
- McKee, K.K.; Hohenester, E.; Aleksandrova, M.; Yurchenco, P.D. Organization of the laminin polymer node. Matrix Biol. 2021, 98, 49–63. [Google Scholar] [CrossRef]
- Pang, X.; He, X.; Qiu, Z.; Zhang, H.; Xie, R.; Liu, Z.; Gu, Y.; Zhao, N.; Xiang, Q.; Cui, Y. Targeting integrin pathways: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 1. [Google Scholar] [CrossRef]
- Yao, Y. Laminin: Loss-of-function studies. Cell. Mol. Life Sci. 2017, 74, 1095–1115. [Google Scholar] [CrossRef]
- Shaw, L.; Sugden, C.J.; Hamill, K.J. Laminin Polymerization and Inherited Disease: Lessons From Genetics. Front. Genet. 2021, 12, 707087. [Google Scholar] [CrossRef]
- Schéele, S.; Nyström, A.; Durbeej, M.; Talts, J.F.; Ekblom, M.; Ekblom, P. Laminin isoforms in development and disease. J. Mol. Med. 2007, 85, 825–836. [Google Scholar] [CrossRef]
- Nonnast, E.; Mira, E.; Mañes, S. The role of laminins in cancer pathobiology: A comprehensive review. J. Transl. Med. 2025, 23, 83. [Google Scholar] [CrossRef] [PubMed]
- Arimori, T.; Miyazaki, N.; Mihara, E.; Takizawa, M.; Taniguchi, Y.; Cabañas, C.; Sekiguchi, K.; Takagi, J. Structural mechanism of laminin recognition by integrin. Nat. Commun. 2021, 12, 4012. [Google Scholar] [CrossRef] [PubMed]
- Smalheiser, N.R.; Schwartz, N.B. Cranin: A laminin-binding protein of cell membranes. Proc. Natl. Acad. Sci. USA 1987, 84, 6457–6461. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.Q.; McNally, E.M. The Dystrophin Complex: Structure, Function, and Implications for Therapy. Compr. Physiol. 2015, 5, 1223–1239. [Google Scholar] [CrossRef]
- Cloutier, G.; Sallenbach-Morrissette, A.; Beaulieu, J.F. Non-integrin laminin receptors in epithelia. Tissue Cell 2019, 56, 71–78. [Google Scholar] [CrossRef]
- Endo, T. Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 2015, 157, 1–12. [Google Scholar] [CrossRef]
- Briggs, D.C.; Yoshida-Moriguchi, T.; Zheng, T.; Venzke, D.; Anderson, M.E.; Strazzulli, A.; Moracci, M.; Yu, L.; Hohenester, E.; Campbell, K.P. Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat. Chem. Biol. 2016, 12, 810–814. [Google Scholar] [CrossRef]
- Yoshida-Moriguchi, T.; Campbell, K.P. Matriglycan: A novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 2015, 25, 702–713. [Google Scholar] [CrossRef]
- Sheikh, M.O.; Capicciotti, C.J.; Liu, L.; Praissman, J.; Ding, D.; Mead, D.G.; Brindley, M.A.; Willer, T.; Campbell, K.P.; Moremen, K.W.; et al. Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nat. Commun. 2022, 13, 3617. [Google Scholar] [CrossRef]
- Quereda, C.; Pastor, À.; Martín-Nieto, J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int. 2022, 22, 395. [Google Scholar] [CrossRef]
- McDearmon, E.L.; Combs, A.C.; Sekiguchi, K.; Fujiwara, H.; Ervasti, J.M. Brain alpha-dystroglycan displays unique glycoepitopes and preferential binding to laminin-10/11. FEBS Lett. 2006, 580, 3381–3385. [Google Scholar] [CrossRef] [PubMed]
- Gumlaw, N.; Sevigny, L.M.; Zhao, H.; Luo, Z.; Bangari, D.S.; Masterjohn, E.; Chen, Y.; McDonald, B.; Magnay, M.; Travaline, T.; et al. biAb Mediated Restoration of the Linkage between Dystroglycan and Laminin-211 as a Therapeutic Approach for α-Dystroglycanopathies. Mol. Ther. 2020, 28, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Omura, Y.; Kotera, K.; Ito, R.; Ohno, S.; Manabe, N.; Yamaguchi, Y.; Tamura, J.I. Synthesis of the matriglycan hexasaccharide, -3Xylα1-3GlcAβ1-trimer and its interaction with laminin. Org. Biomol. Chem. 2022, 20, 8489–8500. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.L.; Zheng, H.L.; Li, H.H.; Lu, J.J.; Xue, S.G.; Luo, Y.; Ma, C.; Liu, J.F.; Hu, Z.L.; Ni, L.; et al. Deficiency of Glycosylated α-Dystroglycan in Ventral Hippocampus Bridges the Destabilization of Gamma-Aminobutyric Acid Type A Receptors With the Depressive-like Behaviors of Male Mice. Biol. Psychiatry 2022, 91, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Esser, A.K.; Miller, M.R.; Huang, Q.; Meier, M.M.; Beltran-Valero de Bernabé, D.; Stipp, C.S.; Campbell, K.P.; Lynch, C.F.; Smith, B.J.; Cohen, M.B.; et al. Loss of LARGE2 disrupts functional glycosylation of α-dystroglycan in prostate cancer. J. Biol. Chem. 2013, 288, 2132–2142. [Google Scholar] [CrossRef]
- Beltrán, D.; Anderson, M.E.; Bharathy, N.; Settelmeyer, T.P.; Svalina, M.N.; Bajwa, Z.; Shern, J.F.; Gultekin, S.H.; Cuellar, M.A.; Yonekawa, T.; et al. Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma. Skelet. Muscle 2019, 9, 11. [Google Scholar] [CrossRef]
- Lu, P.J.; Tucker, J.D.; Branch, E.K.; Guo, F.; Blaeser, A.R.; Lu, Q.L. Ribitol enhances matriglycan of α-dystroglycan in breast cancer cells without affecting cell growth. Sci. Rep. 2020, 10, 4935. [Google Scholar] [CrossRef]
- Garry, R.F. Lassa Virus Structural Biology and Replication. Curr. Top. Microbiol. Immunol. 2023, 440, 147–164. [Google Scholar]
- Katz, M.; Diskin, R. The underlying mechanisms of arenaviral entry through matriglycan. Front. Mol. Biosci. 2024, 11, 1371551. [Google Scholar] [CrossRef]
- Hara, Y.; Kanagawa, M.; Kunz, S.; Yoshida-Moriguchi, T.; Satz, J.S.; Kobayashi, Y.M.; Zhu, Z.; Burden, S.J.; Oldstone, M.B.; Campbell, K.P. Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection. Proc. Natl. Acad. Sci. USA 2011, 108, 17426–17431. [Google Scholar] [CrossRef]
- Jin, S.H.; Kim, S.K.; Lee, S.B. M. leprae interacts with the human epidermal keratinocytes, neonatal (HEKn) via the binding of laminin-5 with α-dystroglycan, integrin-β1, or -β4. PLoS Negl. Trop. Dis. 2019, 13, e0007339. [Google Scholar] [CrossRef] [PubMed]
- Arefin, A.; Ismail Ema, T.; Islam, T.; Hossen, S.; Islam, T.; Al Azad, S.; Uddin Badal, N.; Islam, A.; Biswas, P.; Alam, N.U.; et al. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: An insilico approach. J. Biomed. Res. 2021, 35, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Yuan, K.; Xue, S.; Lu, W.; Wu, X.; Liu, W.; Xue, Q.; Liu, L.; Hu, J.; Guo, L.; et al. Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2. Free Radic. Biol. Med. 2025, 230, 1–16. [Google Scholar] [CrossRef]
- Nelson, J.; McFerran, N.V.; Pivato, G.; Chambers, E.; Doherty, C.; Steele, D.; Timson, D.J. The 67 kDa laminin receptor: Structure, function and role in disease. Biosci. Rep. 2008, 28, 33–48. [Google Scholar] [CrossRef]
- DiGiacomo, V.; Meruelo, D. Looking into laminin receptor: Critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol. Rev. Camb. Philos. Soc. 2016, 91, 288–310. [Google Scholar] [CrossRef]
- Fu, M.; Barlow-Anacker, A.J.; Kuruvilla, K.P.; Bowlin, G.L.; Seidel, C.W.; Trainor, P.A.; Gosain, A. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB J. 2020, 34, 9815–11312. [Google Scholar] [CrossRef]
- Limone, A.; Maggisano, V.; Sarnataro, D.; Bulotta, S. Emerging roles of the cellular prion protein (PrPC) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell. Mol. Life Sci. 2023, 80, 207. [Google Scholar] [CrossRef]
- Fatehullah, A.; Doherty, C.; Pivato, G.; Allen, G.; Devine, L.; Nelson, J.; Timson, D.J. Interactions of the 67 kDa laminin receptor and its precursor with laminin. Biosci. Rep. 2009, 30, 73–79. [Google Scholar] [CrossRef]
- Omar, A.; Reusch, U.; Knackmuss, S.; Little, M.; Weiss, S.F.T. Anti-LRP/LR-specific antibody IgG1-iS18 significantly reduces adhesion and invasion of metastatic lung, cervix, colon and prostate cancer cells. J. Mol. Biol. 2012, 419, 102–109. [Google Scholar] [CrossRef]
- Vania, L.; Chetty, C.J.; Ferreira, E.; Weiss, S.F.T. Anti-LRP/LR-Specific Antibody IgG1-iS18 Significantly Impedes Adhesion and Invasion in Early- and Late-Stage Colorectal Carcinoma Cells. Mol. Med. 2016, 22, 664–673. [Google Scholar] [CrossRef]
- Bignoux, M.J.; Otgaar, T.C.; Bernert, M.; Weiss, S.F.T.; Ferreira, E. Downregulation of LRP/LR with siRNA inhibits several cancer hallmarks in lung cancer cells. FEBS Open Bio 2023, 13, 323–340. [Google Scholar] [CrossRef]
- Umbaugh, C.S.; Diaz-Quiñones, A.; Neto, M.F.; Shearer, J.J.; Figueiredo, M.L. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model. Oncotarget 2017, 9, 5958–5978. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, K.; Loos, B.; Da Costa Dias, B.; Penny, C.; Weiss, S.F.T. High Resolution Imaging Study of Interactions between the 37 kDa/67 kDa Laminin Receptor and APP, Beta-Secretase and Gamma-Secretase in Alzheimer’s Disease. PLoS ONE 2014, 9, e100373. [Google Scholar] [CrossRef] [PubMed]
- Dias, B.D.C.; Jovanovic, K.; Gonsalves, D.; Moodley, K.; Reusch, U.; Knackmuss, S.; Penny, C.; Weinberg, M.S.; Little, M.; Weiss, S.F.T. Anti-LRP/LR specific antibody IgG1-iS18 and knock-down of LRP/LR by shRNAs rescue cells from Aβ42 induced cytotoxicity. Sci. Rep. 2013, 3, 2702. [Google Scholar]
- Liu, G.; Weinger, J.G.; Lu, Z.L.; Xue, F.; Sadeghpour, S. Efficacy and Safety of MMFS-01, a Synapse Density Enhancer, for Treating Cognitive Impairment in Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimer’s Dis. 2016, 49, 971–990. [Google Scholar] [CrossRef]
- Pesapane, A.; Di Giovanni, C.; Rossi, F.W.; Alfano, D.; Formisano, L.; Ragno, P.; Selleri, C.; Montuori, N.; Lavecchia, A. Discovery of new small molecules inhibiting 67 kDa laminin receptor interaction with laminin and cancer cell invasion. Oncotarget 2015, 6, 18116–18133. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Limone, A.; Napolitano, F.; Cerchia, C.; Parisi, S.; Minopoli, G.; Montuori, N.; Lavecchia, A.; Sarnataro, D. APP Maturation and Intracellular Localization Are Controlled by a Specific Inhibitor of 37/67 kDa Laminin-1 Receptor in Neuronal Cells. Int. J. Mol. Sci. 2020, 21, 1738. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Izzo, A.; Mollo, N.; Napolitano, F.; Limone, A.; Margheri, F.; Mocali, A.; Minopoli, G.; Lo Bianco, A.; Di Maggio, F.; et al. Inhibition of 37/67kDa Laminin-1 Receptor Restores APP Maturation and Reduces Amyloid-β in Human Skin Fibroblasts from Familial Alzheimer’s Disease. J. Pers. Med. 2020, 10, 232. [Google Scholar] [CrossRef]
- Limone, A.; Di Napoli, C.; Napolitano, F.; Imbò, B.; Minopoli, G.; Bagnoli, S.; Izzo, A.; Paladino, S.; Nacmias, B.; De Matteis, M.A.; et al. Targeting RPSA to modulate endosomal trafficking and amyloidogenesis in genetic Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167753. [Google Scholar] [CrossRef]
- Fujimura, Y.; Sumida, M.; Sugihara, K.; Tsukamoto, S.; Yamada, K.; Tachibana, H. Green tea polyphenol EGCG sensing motif on the 67-kDa laminin receptor. PLoS ONE 2012, 7, e37942. [Google Scholar] [CrossRef]
- Saeki, K.; Hayakawa, S.; Nakano, S.; Ito, S.; Oishi, Y.; Suzuki, S.; Isemura, M. In Vitro and In Silico Studies of the Molecular Interactions of Epigallocatechin-3- O-gallate (EGCG) with Proteins That Explain the Health Benefits of Green Tea. Molecules 2018, 23, 1295. [Google Scholar] [CrossRef] [PubMed]
- Shanafelt, T.D.; Call, T.G.; Zent, C.S.; Leis, J.F.; LaPlant, B.; Bowen, D.A.; Roos, M.; Laumann, K.; Ghosh, A.K.; Lesnick, C.; et al. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer 2013, 119, 363–370. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Salehi-Abargouei, A.; Mozaffari, Z.; Hemayati, R. The effect of green tea (Camellia sinensis) on lipid profiles and renal function in people with type 2 diabetes and nephropathy: A randomized controlled clinical trial. Front. Nutr. 2023, 10, 1253275. [Google Scholar] [CrossRef]
- Yoshitomi, R.; Yamamoto, M.; Kumazoe, M.; Fujimura, Y.; Yonekura, M.; Shimamoto, Y.; Nakasone, A.; Kondo, S.; Hattori, H.; Haseda, A.; et al. The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: A randomized placebo-controlled clinical trial. Sci. Rep. 2021, 11, 19067. [Google Scholar] [CrossRef]
- Sakae, Y.; Takada, H.; Ichinose, S.; Nakajima, M.; Sakai, A.; Ogawa, R. Treatment with YIGSR peptide ameliorates mouse tail lymphedema by 67 kDa laminin receptor (67LR)-dependent cell-cell adhesion. Biochem. Biophys. Rep. 2023, 35, 101514. [Google Scholar] [CrossRef]
- Mbazima, V.; Da Costa Dias, B.; Omar, A.; Jovanovic, K.; Weiss, S.F. Interactions between PrP(c) and other ligands with the 37-kDa/67-kDa laminin receptor. Front. Biosci. (Landmark Ed.) 2010, 15, 1150–1163. [Google Scholar]
- Choi, Y.; Chung, H.; Jung, H.; Couchman, J.R.; Oh, E.S. Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol. 2011, 30, 93–99. [Google Scholar] [CrossRef]
- Afratis, N.A.; Nikitovic, D.; Multhaupt, H.A.B.; Theocharis, A.D.; Couchman, J.R.; Karamanos, N.K. Syndecans—Key regulators of cell signaling and biological functions. FEBS J. 2017, 284, 27–41. [Google Scholar] [CrossRef]
- Yokoyama, F.; Suzuki, N.; Kadoya, Y.; Utani, A.; Nakatsuka, H.; Nishi, N.; Haruki, M.; Kleinman, H.K.; Nomizu, M. Bifunctional peptides derived from homologous loop regions in the laminin alpha chain LG4 modules interact with both alpha 2 beta 1 integrin and syndecan-2. Biochemistry 2005, 44, 9581–9589. [Google Scholar] [CrossRef]
- Hozumi, K.; Suzuki, N.; Nielsen, P.K.; Nomizu, M.; Yamada, Y. Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J. Biol. Chem. 2006, 281, 32929–32940. [Google Scholar] [CrossRef]
- Agere, S.A.; Kim, E.Y.; Akhtar, N.; Ahmed, S. Syndecans in chronic inflammatory and autoimmune diseases: Pathological insights and therapeutic opportunities. J. Cell. Physiol. 2018, 233, 6346–6358. [Google Scholar] [CrossRef] [PubMed]
- Bachy, S.; Letourneur, F.; Rousselle, P. Syndecan-1 interaction with the LG4/5 domain in laminin-332 is essential for keratinocyte migration. J. Cell. Physiol. 2008, 214, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Michopoulou, A.; Montmasson, M.; Garnier, C.; Lambert, E.; Dayan, G.; Rousselle, P. A novel mechanism in wound healing: Laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. Matrix Biol. 2020, 94, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, Y.; Hozumi, K.; Katagiri, F.; Nomizu, M.; Kleinman, H.K.; Koblinski, J.E. Laminin-111-derived peptides and cancer. Cell Adh Migr. 2013, 7, 150–256. [Google Scholar] [CrossRef]
- Puchalapalli, M.; Mu, L.; Edwards, C.; Kaplan-Singer, B.; Eni, P.; Belani, K.; Finkelstein, D.; Patel, A.; Sayyad, M.; Koblinski, J.E. The Laminin- α 1 Chain-Derived Peptide, AG73, Binds to Syndecans on MDA-231 Breast Cancer Cells and Alters Filopodium Formation. Anal. Cell. Pathol. 2019, 2019, 9192516. [Google Scholar] [CrossRef]
- Nascimento, C.F.; de Siqueira, A.S.; Pinheiro, J.J.V.; Freitas, V.M.; Jaeger, R.G. Laminin-111 derived peptides AG73 and C16 regulate invadopodia activity of a human adenoid cystic carcinoma cell line. Exp. Cell Res. 2011, 317, 2562–2572. [Google Scholar] [CrossRef]
- Mochizuki, M.; Philp, D.; Hozumi, K.; Suzuki, N.; Yamada, Y.; Kleinman, H.K.; Nomizu, M. Angiogenic activity of syndecan-binding laminin peptide AG73 (RKRLQVQLSIRT). Arch. Biochem. Biophys. 2007, 459, 249–255. [Google Scholar] [CrossRef]
- Kelly, K.R.; Ailawadhi, S.; Siegel, D.S.; Heffner, L.T.; Somlo, G.; Jagannath, S.; Zimmerman, T.M.; Munshi, N.C.; Madan, S.; Chanan-Khan, A.; et al. Indatuximab ravtansine plus dexamethasone with lenalidomide or pomalidomide in relapsed or refractory multiple myeloma: A multicentre, phase 1/2a study. Lancet Haematol. 2021, 8, e794–e807. [Google Scholar] [CrossRef]
- Paul, A.G.; Sharma-Walia, N.; Chandran, B. Targeting KSHV/HHV-8 latency with COX-2 selective inhibitor nimesulide: A potential chemotherapeutic modality for primary effusion lymphoma. PLoS ONE 2011, 6, e24379. [Google Scholar]
- Onyeisi, J.O.S.; Pernambuco Filho, P.C.A.; Mesquita, A.P.S.; Azevedo, L.C.; Nader, H.B.; Lopes, C.C. Effects of syndecan-4 gene silencing by micro RNA interference in anoikis resistant endothelial cells: Syndecan-4 silencing and anoikis resistance. Int. J. Biochem. Cell Biol. 2020, 128, 105848. [Google Scholar] [CrossRef]
- Onyeisi, J.O.S.; Castanho de Almeida Pernambuco Filho, P.; de Araujo Lopes, S.; Nader, H.B.; Lopes, C.C. Heparan sulfate proteoglycans as trastuzumab targets in anoikis-resistant endothelial cells. J. Cell. Biochem. 2019, 120, 13826–13840. [Google Scholar] [CrossRef] [PubMed]
- Gialeli, C.; Theocharis, A.D.; Kletsas, D.; Tzanakakis, G.N.; Karamanos, N.K. Expression of matrix macromolecules and functional properties of EGF-responsive colon cancer cells are inhibited by panitumumab. Investig. New Drugs 2013, 31, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K.; Hagiwara, N.; Horigome, T.; Hirose, Y.; Kadono, N.; Hirai, Y. Extracellularly Extruded Syntaxin-4 Binds to Laminin and Syndecan-1 to Regulate Mammary Epithelial Morphogenesis. J. Cell. Biochem. 2017, 118, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Jain, E.; Barcellona, M.N.; Morris, E.; Neal, S.; Gupta, M.C.; Buchowski, J.M.; Kelly, M.; Setton, L.A.; Huebsch, N. Integrin and syndecan binding peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype. Biomaterials 2021, 277, 121113. [Google Scholar] [CrossRef]
- Filla, M.S.; Clark, R.; Peters, D.M. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells. Exp. Cell Res. 2014, 327, 171–182. [Google Scholar] [CrossRef]
- Jin, J.; Guo, Q.; Yan, Z. The Role of Lutheran/Basal Cell Adhesion Molecule in Hematological Diseases and Tumors. Int. J. Mol. Sci. 2024, 25, 7268. [Google Scholar] [CrossRef]
- Godavarthy, P.S.; Walter, C.B.; Lengerke, C.; Klein, G. The Laminin Receptors Basal Cell Adhesion Molecule/Lutheran and Integrin α7β1 on Human Hematopoietic Stem Cells. Front. Cell Dev. Biol. 2021, 9, 675240. [Google Scholar] [CrossRef]
- Kroviarski, Y.; El Nemer, W.; Gane, P.; Rahuel, C.; Gauthier, E.; Lecomte, M.C.; Cartron, J.P.; Colin, Y.; Le Van Kim, C. Direct interaction between the Lu/B-CAM adhesion glycoproteins and erythroid spectrin. Br. J. Haematol. 2004, 126, 255–264. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Matsunuma, M.; Kan, R.; Yamada, Y.; Hamada, K.; Nomizu, M.; Negishi, Y.; Nagamori, S.; Toda, T.; Tanaka, M.; et al. Laminin α5_CD239_Spectrin is a candidate association that compensates the linkage between the basement membrane and cytoskeleton in skeletal muscle fibers. Matrix Biol. Plus 2022, 15, 100118. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Miwa, T.; Tanimizu, N.; Kadoya, Y.; Ogawa, T.; Katagiri, F.; Hozumi, K.; Nomizu, M.; Mizuguchi, T.; Hirata, K.; et al. Soluble Lutheran/basal cell adhesion molecule is detectable in plasma of hepatocellular carcinoma patients and modulates cellular interaction with laminin-511 in vitro. Exp. Cell Res. 2014, 328, 197–206. [Google Scholar] [CrossRef]
- El Nemer, W.; Colin, Y.; Le Van Kim, C. Role of Lu/BCAM glycoproteins in red cell diseases. Transfus. Clin. Biol. 2010, 17, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Brusson, M.; De Grandis, M.; Cochet, S.; Bigot, S.; Marin, M.; Leduc, M.; Guillonneau, F.; Mayeux, P.; Peyrard, T.; Chomienne, C.; et al. Impact of hydroxycarbamide and interferon-α on red cell adhesion and membrane protein expression in polycythemia vera. Haematologica 2018, 103, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Schön, M.; Klein, C.E.; Hogenkamp, V.; Kaufmann, R.; Wienrich, B.G.; Schön, M.P. Basal-cell adhesion molecule (B-CAM) is induced in epithelial skin tumors and inflammatory epidermis, and is expressed at cell-cell and cell-substrate contact sites. J. Invest. Dermatol. 2000, 115, 1047–1053. [Google Scholar] [CrossRef]
- Burela, S.; He, M.; Trontzas, I.P.; Gavrielatou, N.; Schalper, K.A.; Langermann, S.; Flies, D.B.; Rimm, D.L.; Aung, T.N. BCAM (basal cell adhesion molecule) protein expression in different tumor populations. Discov. Oncol. 2024, 15, 381. [Google Scholar] [CrossRef]
- Chang, H.Y.; Chang, H.M.; Wu, T.J.; Chaing, C.Y.; Tzai, T.S.; Cheng, H.L.; Raghavaraju, G.; Chow, N.H.; Liu, H.S. The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis. J. Biomed. Sci. 2017, 24, 61. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Ogawa, T.; Sudo, R.; Yamada, Y.; Katagiri, F.; Hozumi, K.; Nomizu, M.; Miner, J.H. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein. J. Biol. Chem. 2013, 288, 30990–31001. [Google Scholar] [CrossRef]
- Bartolini, A.; Cardaci, S.; Lamba, S.; Oddo, D.; Marchiò, C.; Cassoni, P.; Amoreo, C.A.; Corti, G.; Testori, A.; Bussolino, F.; et al. BCAM and LAMA5 Mediate the Recognition between Tumor Cells and the Endothelium in the Metastatic Spreading of KRAS-Mutant Colorectal Cancer. Clin. Cancer Res. 2016, 22, 4923–4933. [Google Scholar] [CrossRef]
- Enomoto-Okawa, Y.; Maeda, Y.; Harashima, N.; Sugawara, Y.; Katagiri, F.; Hozumi, K.; Hui, K.M.; Nomizu, M.; Ito, Y.; Kikkawa, Y. An Anti-Human Lutheran Glycoprotein Phage Antibody Inhibits Cell Migration on Laminin-511: Epitope Mapping of the Antibody. PLoS ONE 2017, 12, e0167860. [Google Scholar] [CrossRef]
- Moreira Latini, F.R.; Bastos, A.U.; Arnoni, C.P.; Muniz, J.G.; Person, R.M.; Baleotti, W., Jr.; Barreto, J.A.; Castilho, L.; Cerutti, J.M. DARC (Duffy) and BCAM (Lutheran) reduced expression in thyroid cancer. Blood Cells Mol. Dis. 2013, 50, 161–165. [Google Scholar] [CrossRef]
- Klei, T.R.L.; de Back, D.Z.; Asif, P.J.; Verkuijlen, P.J.J.H.; Veldthuis, M.; Ligthart, P.C.; Berghuis, J.; Clifford, E.; Beuger, B.M.; van den Berg, T.K.; et al. Glycophorin-C sialylation regulates Lu/BCAM adhesive capacity during erythrocyte aging. Blood Adv. 2018, 2, 14–24. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Q.; Zhang, N.; Du, X.; Xu, G.; Yan, X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct. Target. Ther. 2020, 5, 148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, X.; Weng, W.; Qiao, Y.; Lin, J.; Liu, W.; Liu, R.; Ma, L.; Yu, W.; Yu, Y.; et al. The membrane protein melanoma cell adhesion molecule (MCAM) is a novel tumor marker that stimulates tumorigenesis in hepatocellular carcinoma. Oncogene 2015, 34, 5781–5795. [Google Scholar] [CrossRef]
- Guezguez, B.; Vigneron, P.; Alais, S.; Jaffredo, T.; Gavard, J.; Mège, R.M.; Dunon, D. A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Lett. 2006, 580, 3649–3656. [Google Scholar] [CrossRef]
- Kebir, A.; Harhouri, K.; Guillet, B.; Liu, J.W.; Foucault-Bertaud, A.; Lamy, E.; Kaspi, E.; Elganfoud, N.; Vely, F.; Sabatier, F.; et al. CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo. Circ. Res. 2010, 107, 66–75. [Google Scholar] [CrossRef]
- Anfosso, F.; Bardin, N.; Vivier, E.; Sabatier, F.; Sampol, J.; Dignat-George, F. Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J. Biol. Chem. 2001, 276, 1564–1569. [Google Scholar] [CrossRef]
- Joshkon, A.; Heim, X.; Dubrou, C.; Bachelier, R.; Traboulsi, W.; Stalin, J.; Fayyad-Kazan, H.; Badran, B.; Foucault-Bertaud, A.; Leroyer, A.S.; et al. Role of CD146 (MCAM) in Physiological and Pathological Angiogenesis-Contribution of New Antibodies for Therapy. Biomedicines 2020, 8, 633. [Google Scholar] [CrossRef]
- Bu, P.; Zhuang, J.; Feng, J.; Yang, D.; Shen, X.; Yan, X. Visualization of CD146 dimerization and its regulation in living cells. Biochim. Biophys. Acta 2007, 1773, 513–520. [Google Scholar] [CrossRef]
- Ishikawa, T.; Wondimu, Z.; Oikawa, Y.; Ingerpuu, S.; Virtanen, I.; Patarroyo, M. Monoclonal antibodies to human laminin α4 chain globular domain inhibit tumor cell adhesion and migration on laminins 411 and 421, and binding of α6β1 integrin and MCAM to α4-laminins. Matrix Biol. 2014, 36, 5–14. [Google Scholar] [CrossRef]
- Flanagan, K.; Fitzgerald, K.; Baker, J.; Regnstrom, K.; Gardai, S.; Bard, F.; Mocci, S.; Seto, P.; You, M.; Larochelle, C.; et al. Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS ONE 2012, 7, e40443. [Google Scholar] [CrossRef]
- Breuer, J.; Korpos, E.; Hannocks, M.J.; Schneider-Hohendorf, T.; Song, J.; Zondler, L.; Herich, S.; Flanagan, K.; Korn, T.; Zarbock, A.; et al. Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. J. Neuroinflamm. 2018, 15, 236. [Google Scholar] [CrossRef]
- Charabati, M.; Zandee, S.; Fournier, A.P.; Tastet, O.; Thai, K.; Zaminpeyma, R.; Lécuyer, M.A.; Bourbonnière, L.; Larouche, S.; Klement, W.; et al. MCAM+ brain endothelial cells contribute to neuroinflammation by recruiting pathogenic CD4+ T lymphocytes. Brain 2023, 146, 1483–1495. [Google Scholar] [CrossRef]
- Raychaudhuri, S.K.; Abria, C.; Raychaudhuri, S.P. Phenotype and pathological significance of MCAM+ (CD146+) T cell subset in psoriatic arthritis. Mol. Biol. Rep. 2021, 48, 6787–6796. [Google Scholar] [CrossRef]
- Ishikawa, T.; Wondimu, Z.; Oikawa, Y.; Gentilcore, G.; Kiessling, R.; Egyhazi Brage, S.; Hansson, J.; Patarroyo, M. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biol. 2014, 38, 69–83. [Google Scholar] [CrossRef]
- Wragg, J.W.; Finnity, J.P.; Anderson, J.A.; Ferguson, H.J.; Porfiri, E.; Bhatt, R.I.; Murray, P.G.; Heath, V.L.; Bicknell, R. MCAM and LAMA4 Are Highly Enriched in Tumor Blood Vessels of Renal Cell Carcinoma and Predict Patient Outcome. Cancer Res. 2016, 76, 2314–2326. [Google Scholar] [CrossRef]
- Westrøm, S.; Bønsdorff, T.B.; Abbas, N.; Bruland, Ø.S.; Jonasdottir, T.J.; Mælandsmo, G.M.; Larsen, R.H. Evaluation of CD146 as Target for Radioimmunotherapy against Osteosarcoma. PLoS ONE 2016, 11, e0165382. [Google Scholar] [CrossRef]
- Lindland, K.; Malenge, M.M.; Li, R.G.; Wouters, R.; Bønsdorff, T.B.; Juzeniene, A.; Dragovic, S.M. Antigen targeting and anti-tumor activity of a novel anti-CD146 212Pb internalizing alpha-radioimmunoconjugate against malignant peritoneal mesothelioma. Sci. Rep. 2024, 14, 25941. [Google Scholar] [CrossRef]
Non-Integrin Receptors | Tissue Specificity | Functional Outputs | Related Diseases | Active Compounds or Neutralizing Antibodies |
---|---|---|---|---|
Dystroglycan | adipose, epithelial, endothelial, blood, brain and skeletal muscle | stability of basement membrane, cell shape, proliferation, differentiation, tissue-specific gene expression | Dystroglycanopathies Cancer Arenavirus infections | Ribitol-enhanced matriglycan |
67-kDa LR * | ubiquitous | cell adhesion, ribosomal biogenesis and translation, pre-ribosomal RNA processing, cell migration, growth, cytoskeletal reorganization | Cancer Alzheimer’s disease Microbial and viral diseases | IgG1-Is18 NSC48478 Epigallocatechin-3-O-gallate YIGSR peptide |
Syndecan-1 | epithelial and plasma cells | cell proliferation, adhesion, migration, wound healing, mammary epithelial morphogenesis | Cancer (multiple myeloma) | AG73 peptide BT062 (indatuximab ravtansine) |
Syndecan-2 | mesenchymal cells, fibroblasts, and smooth cells | cell proliferation, adhesion, and migration | Cancer | AG73 peptide |
Syndecan-4 | ubiquitous | cell proliferation, adhesion, and migration, control of intraocular pressure | Cancer | AG73 peptide PEP75 |
Lu/BCAM ** | red blood, smooth muscle, endothelial, peripheral nerve, epithelial cells, macrophages, and hematopoietic stem cells | cell adhesion, migration, and invasion | Sick cell disease Hereditary Spherocytosis Polycythemia vera Cancer | - |
MCAM *** | vascular endothelial, smooth muscle, glomerular mesangial, Schwann, mesenchymal cells, and leukocytes | cell adhesion and migration | Cancer Multiple sclerosis Psoriatic arthritis | 177Lu-labeled OI-3 212Pb-TCMC-OI-3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, F.; Fabozzi, M.; Montuori, N. Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases. Int. J. Mol. Sci. 2025, 26, 3546. https://doi.org/10.3390/ijms26083546
Napolitano F, Fabozzi M, Montuori N. Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases. International Journal of Molecular Sciences. 2025; 26(8):3546. https://doi.org/10.3390/ijms26083546
Chicago/Turabian StyleNapolitano, Filomena, Maria Fabozzi, and Nunzia Montuori. 2025. "Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases" International Journal of Molecular Sciences 26, no. 8: 3546. https://doi.org/10.3390/ijms26083546
APA StyleNapolitano, F., Fabozzi, M., & Montuori, N. (2025). Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases. International Journal of Molecular Sciences, 26(8), 3546. https://doi.org/10.3390/ijms26083546