Biological Potential of Methanol Extracts from Plants of the Genus Spiraea Spreading in Russia
Abstract
:1. Introduction
2. Results
2.1. Profiling of Secondary Metabolites in the Methanolic First-Year Shoot Extracts of Spiraea spp.
2.2. Antioxidant Effects of the Methanolic Shoot Extracts of Spiraea spp.
2.3. Antiviral Effects of the Methanolic Shoot Extracts of Spiraea spp.
2.4. Antibacterial Activity of Methanolic Shoot Extracts of Spiraea spp.
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Materials
4.3. Preparation of Extracts
4.4. Metabolite Profiling
4.5. Targeted Tandem Mass Spectrometry (MS/MS) Experiments
4.6. Antioxidant Effects
4.6.1. DPPH Free Radical Scavenging Effect
4.6.2. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
4.6.3. Assessment of Extract Capacity to Scavenge Superoxide Anion Radicals (NBT Assay)
4.7. Cytotoxicity Assay
4.8. Antiviral Assay
4.9. Antibacterial Assay
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. Materials 2020, 13, 4454. [Google Scholar] [CrossRef]
- Olender, D.; Żwawiak, J.; Zaprutko, L. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines. Pharmaceuticals 2018, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Odoh, U.E.; Ganguly, S.; Muhammad, M.; Chatterjee, M.; Chikeokwu, I.; Egbuna, C. Phytochemistry, History, and Progress in Drug Discovery. In Phytochemistry, Computational Tools and Databases in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–26. [Google Scholar] [CrossRef]
- Bender, O.; Llorent-Martínez, E.J.; Zengin, G.; Mollica, A.; Ceylan, R.; Molina-Garcia, L.; Fernández-de Córdova, M.L.; Atalay, A. Integration of in vitro and in silico perspectives to explain chemical characterization, biological potential and anticancer effects of Hypericum salsugineum: A pharmacologically active source for functional drug formulations. PLoS ONE 2018, 13, e0197815. [Google Scholar] [CrossRef] [PubMed]
- The Plant List. Version 1.1. 2013. Available online: https://www.theplantlist.org (accessed on 1 May 2021).
- Pojarkova, A.I. Sorbaria. A.Br. In Flora of the U.S.S.R., Vol. 4; Komarov, V.L., Yuzepchuk, S.V., Eds.; Department of Commerce, U.S. Virginia: Arlington, VA, USA, 1971; pp. 240–243. [Google Scholar]
- Vstovskaya, T.N.; Koropachinsky, I.Y. Woody Plants of the Central Siberian Botanical Garden; SB RAS Publishing House, Geo Branch: Novosibirsk, Russia, 2005; 235p. (In Russian) [Google Scholar]
- Baikov, K.S. Conspectus Florae Rossiae Asiaticae: Plantae Vasculares; Publishing House of the Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2012; ISBN 978-5-76-921213-0. (In Russian) [Google Scholar]
- Mayevsky, P.F. Flora of the Middle Zone of the European Part of Russia, 10th ed.; Association of Scientific Publications KMK: Moscow, Russia, 2006; 600p. [Google Scholar]
- Shulgina, V.V.; Genus Spiraea, L. Trees and Shrubs of the USSR—Native, Cultivated or Promising for Introduction; Sokolov, S.Y., Ed.; Akademija Nauk SSSR: Moskow/Leningrad, Russia, 1954; Volume 3, pp. 269–331. (In Russian) [Google Scholar]
- Lu, L.T.; Crinan, A. Spiraea Linnaeus. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China; MBG Press: St. Louis, MI, USA, 2003; Volume 9, pp. 47–73. [Google Scholar]
- Zhang, X.S.; Wang, B.D. Chinese Medicine Dictionary; Shanghai Science and Technology Publishing House: Shanghai, China, 1986; pp. 1117, 1978. [Google Scholar]
- Wu, T.S.; Hwang, C.C.; Kuo, P.C.; Kuo, T.H.; Damu, A.G.; Su, C.R. New neolignans from Spiraea formosana. Chem. Pharm. Bull. 2004, 52, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.W.; Khatoon, S. Ethanobotanical studies on useful trees and shrubs of Haramosh and Bugrote valleys, in Gilgit northern area of Pakistan. Pak. J. Bot. 2007, 39, 699–710. [Google Scholar]
- Wu, Z.Y. Index Florae Yunnannensis (Tomus I); The People’s Publishing House: Kuming, China, 1984; 524p. [Google Scholar]
- Xie, Z.W. Quanguo Zhongcaoyao Huibian (A Collection of Chinese Herbal Drugs), 2nd ed.; People’s Hygenic Publishing House: Beijing, China, 1996; pp. 514, 767. [Google Scholar]
- Lavrenov, V.K.; Lavrenova, G.V. Complete Encyclopedia of Medicinal Plants; Olma-Press: Moscow, Russia, 1999; Volume 2, pp. 337–340. (In Russian) [Google Scholar]
- Batorova, S.M. Guide to Traditional Tibetan Medicinal Plants; Nauka: Novosibirsk, Russia, 2013. (In Russian) [Google Scholar]
- Lee, B.W.; Ha, J.H.; Shin, H.G.; Jeong, S.H.; Jeon, D.B.; Kim, J.H.; Park, J.Y.; Kwon, H.J.; Jung, K.; Lee, W.S.; et al. Spiraea prunifolia var. simpliciflora attenuates oxidative stress and inflammatory responses in a murine model of lipopolysaccharide-induced acute lung injury and TNF-stimulated NCI-H292 cells. Antioxidants 2020, 9, 198. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Petrova, N.V.; Shaldaeva, T.M.; Koval, V.V.; Chernonosov, A.A. Non-Targeted Screening of Metabolites in Aqueous-Ethanol Extract from Spiraea hypericifolia (Rosaceae) Using LC-HRMS. Int. J. Mol. Sci. 2023, 24, 13872. [Google Scholar] [CrossRef]
- Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, R.G.; Ehlke, N.J.; Biesboer, D.D.; Bey, R.F. Antioxidant and antimicrobial activity of seed from plants of the Mississippi river basin. J. Med. Plants Res. 2008, 2, 81–93. [Google Scholar]
- Lee, J.; Lee, J.; Lim, J.; Sim, S.; Park, D. Antibacterial effects of S-(-)-tulipalin B isolated from Spiraea thunbergii Sieb. on Escherichia coli, major food borne pathogenic microorganism. J. Med. Plants Res. 2008, 2, 59–65. [Google Scholar]
- Kong, Q. Application of Spiraea alpina Extract in Preparing Anticancer Drugs. Chinese Patent 103585310 (CN), 19 February 2014. (In Chinese). [Google Scholar]
- Kaidash, O.A.; Kostikova, V.A.; Udut, E.V.; Shaykin, V.V.; Kashapov, D.R. Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The phenolic profile and biological activities. Plants 2022, 11, 2728. [Google Scholar] [CrossRef]
- Mirovich, V.M.; Krivosheev, I.M.; Gordeeva, V.V.; Tsyrenzhapov, A.V. Method for Producing Agent Possessing Anti-Inflammatory, Diuretic and Antioxidant Activity. Russian Patent RU 2542493C1, 8 November 2013. (In Russian). [Google Scholar]
- Sim, M.O.; Lee, H.J.; Jang, J.H.; Lee, H.E.; Jung, H.K.; Kim, T.M.; No, J.H.; Jung, J.; Jung, D.E.; Cho, H.W. Anti-inflammatory and antioxidant effects of Spiraea prunifolia Sieb. et Zucc. var. simpliciflora Nakai in RAW 264.7 cells. Korean J. Plant Resour. 2017, 30, 335–342. (In Korean) [Google Scholar]
- Rao, A.S. Isolation, absolute configuration and bioactivities of megastigmanes or C13 isonorterpinoides. Chem. Int. 2017, 3, 69–91. [Google Scholar]
- Kostikova, V.A.; Petrova, N.V. Phytoconstituents and bioactivity of plants of the genus Spiraea L. (Rosaceae): A review. Int. J. Mol. Sci. 2021, 22, 11163. [Google Scholar] [CrossRef]
- Luo, D.; Song, M.S.; Xu, B.; Zhang, Y.; Zhang, J.W.; Ma, X.G.; Hao, X.J.; Sun, H. A clue to the evolutionary history of modern East Asian flora: Insights from phylogeography and diterpenoid alkaloid distribution pattern of the Spiraea japonica complex. Mol. Phylogenet. Evol. 2023, 184, 107772. [Google Scholar] [CrossRef]
- Orlova, A.; Kysil, E.; Tsvetkova, E.; Meshalkina, D.; Whaley, A.; Whaley, A.O.; Laub, A.; Francioso, A.; Babich, O.; Wessjohann, L.A.; et al. Phytochemical Characterization of Water Avens (Geum rivale L.) Extracts: Structure Assignment and Biological Activity of the Major Phenolic Constituents. Plants 2022, 11, 2859. [Google Scholar] [CrossRef]
- Mughal, U.R.; Mehmood, R.; Malik, A.; Ali, B.; Tareen, R.B. Flavonoid constituents from Spiraea brahuica. Helv. Chim. Acta 2012, 95, 100–105. [Google Scholar] [CrossRef]
- Yean, M.H.; Kim, J.S.; Kang, S.S.; Kim, Y.S. A new megastigmane glucoside and three new flavonoid glycosides from Spiraea prunifolia var. simpliciflora. Helv. Chim. Acta 2014, 97, 1123–1131. [Google Scholar] [CrossRef]
- Yan, S.D.; Yao, H.L.; Zhang, Y.H.; Gao, H.; Liu, K.; Liu, Y.; Dong, F.Y.; Wang, W. Chemical constituents from Spiraea salicifolia. Chin. Tradit. Herb. Drugs 2016, 47, 2806–2811. [Google Scholar]
- Chou, C.J.; Wang, C.B.; Lin, L.C. Triterpenoids and some other constituents from Spiraeae formosana. J. Chin. Chem. Soc. 1977, 24, 195–198. [Google Scholar] [CrossRef]
- Pande, B.S.; Krishnappa, S.; Bisarya, S.C.; Dev, S. Studies in sesquiterpenes—XLVII: Cis- and trans-atlantones from Cedrus deodara loud. Tetrahedron 1971, 27, 841–844. [Google Scholar] [CrossRef]
- Chumbalov, T.K.; Pashinina, L.T.; Storozhenko, N.D. Flavones and their 5-glycosides from Spiraea hypericifolia. Chem. Nat. Compd. 1975, 11, 440. [Google Scholar] [CrossRef]
- Paris, R.R.; Murgu, L. Polyhenolic compounds of Spiraea crenata. Plant Med. Phytother. 1970, 4, 138–149. [Google Scholar]
- Hörhammer, L.; Hänsel, R.; Endres, W. Über die flavonglykoside der gattungen Filipendula und Spiraea. Arch. Pharm. 1956, 289, 133–140. (In German) [Google Scholar] [CrossRef]
- Kostikova, V.A.; Kuznetsov, A.A.; Tishchenko, E.D.; Fayzylkhakova, A.N. Chemotaxonomic study of Spiraea aemiliana compared to the closely species S. betulifolia and S. beauverdiana. Acta Biol. Sib. 2019, 5, 15–21. (In Russian) [Google Scholar]
- Krivosheev, I.M. Pharmacognostic Study of Spiraea salicifolia L. Growing in Eastern Siberia. Ph.D. Thesis, Irkutsk State Medical University, Ulan-Ude, Russia, 2014. (In Russian). [Google Scholar]
- Karpova, E.A.; Imetkhenova, O.V. Phenolic compounds of representatives of sect. Glomerati of genus Spiraea L. of the flora of Siberia. Turczaninowia 2015, 18, 108–115. (In Russian) [Google Scholar] [CrossRef]
- Choudhary, M.I.; Naheed, N.; Abbaskhan, A.; Ali, S. Hemiterpene glucosides and other constituents from Spiraea canescens. Phytochemistry 2009, 70, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Krivosheev, I.M.; Mirovich, V.M. The study of chemical composition of Spiraea salicifolia L. overground organs by Highly Effective Liquid Chromatography method. Sib. Med. J. 2012, 2, 104–105. (In Russian) [Google Scholar]
- Keskin, S.; Sirin, Y.; Cakir, H.E.; Kaya, G.; Keskin, M. Phenolic composition and antioxidant properties of Spiraea nipponica. Int. J. Sci. Technol. Res. 2019, 5, 87–92. [Google Scholar]
- Karpova, E.A.; Polyakova, T.A. Seasonal dynamics of the composition of phenolic compounds of the leaves of Spiraea media var. sericea (Turcz.) Regel. Chem. Plant Raw Mater. 2014, 3, 145–149. (In Russian) [Google Scholar]
- Bate-Smith, E.C. The phenolic constituents of plants and their taxonomic significance. Bot. J. Linn. Soc. 1962, 58, 95–173. [Google Scholar] [CrossRef]
- Ahn, B.T.; Oh, K.J.; Park, S.K.; Chung, S.G.; Cho, E.H.; Kim, J.G.; Ro, J.S.; Lee, K.S. Phenolic compounds from leaves of Spiraea salicifolia. Korean J. Pharmacogn. 1996, 27, 178–183. [Google Scholar]
- Piconi, L.; Quagliaro, L.; Ceriello, A. Oxidative Stress in Diabetes. Clin. Chem. Lab. Med. 2003, 41, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Tomaselli, G.; Barth, A. Sudden Cardio Arrest: Oxidative stress irritates the heart. Nat. Med. 2010, 16, 648–649. [Google Scholar] [CrossRef]
- Frecska, E.; Bokor, P.; Winkelman, M. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization. Front. Pharmacol. 2016, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Sabu, M.C.; Kuttan, R. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J. Ethnopharmacol. 2002, 81, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Lalkovičová, M.; Danielisová, V. Neuroprotection and antioxidants. Neural Regen. Res. 2016, 11, 865–874. [Google Scholar] [CrossRef]
- Rusu, M.E.; Fizeșan, I.; Vlase, L.; Popa, D.S. Antioxidants in Age-Related Diseases and Anti-Aging Strategies. Antioxidants 2022, 11, 1868. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Visioli, F. Polyphenols and health: Moving beyond antioxidants. J. Berry Res. 2012, 2, 63–71. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81 (Suppl. S1), 215S–217S. [Google Scholar] [CrossRef]
- Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010, 7, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Kostikova, V.A.; Shaldaeva, T.M. The antioxidant activity of the Russian Far East representatives of the Spiraea L. genus (Rosaceae Juss.). Russ. J. Bioorg. Chem. 2017, 43, 790–794. [Google Scholar] [CrossRef]
- Shirshova, T.I.; Bezmaternykh, K.V.; Beshley, I.; Smirnova, A.; Oktyabr’skii, O. Antioxidant Properties of Extracts of Leaves and Inflorescences of Spiraea Media Franz Schmidt from the Flora of Komi Republic. Pharm. Chem. J. 2020, 54, 622–625. [Google Scholar] [CrossRef]
- Kudaibergen, A.A.; Dyusebaeva, M.A.; Ydyrys, A.; Feng, Y.; Jenis, J. Investigation of Chemical Constituents of Medicinal Plant Spiraea Hypericifolia L. Int. J. Biol. Chem. 2019, 12, 128–134. [Google Scholar] [CrossRef]
- Kradin, R.L.; Fishman, J.A. Influenza Virus. In Viruses and the Lung; Springer: Berlin/Heidelberg, Germany, 2014; pp. 79–86. [Google Scholar]
- Thompson, W.W.; Comanor, L.; Shay, D.K. Epidemiology of seasonal influenza: Use of surveillance data and statistical models to estimate the burden of disease. J. Infect. Dis. 2006, 194 (Suppl. S2), S82–S91. [Google Scholar] [CrossRef]
- De Angelis, M.; Della-Morte, D.; Buttinelli, G.; Di Martino, A.; Pacifici, F.; Checconi, P.; Ambrosio, L.; Stefanelli, P.; Palamara, A.T.; Garaci, E.; et al. Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro. Biomedicines 2021, 9, 1721. [Google Scholar] [CrossRef] [PubMed]
- He, R.R.; Wang, M.; Wang, C.Z.; Chen, B.T.; Lu, C.N.; Yao, X.S.; Chen, J.X.; Kurihara, H. Protective effect of apple polyphenols against stress-provoked influenza viral infection in restraint mice. J. Agric. Food Chem. 2011, 59, 3730–3737. [Google Scholar] [CrossRef]
- Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir. Res. 1993, 21, 289–299. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Filippova, E.I.; Vysochina, G.I.; Mazurkova, N.A. Antiviral activity of plants of the genus Spiraea (Rosaceae) growing in the Asian part of Russia. In Proceedings of the International Conference Dedicated to the 70th Anniversary of Central Siberian Botanical Garden “Preserving the Diversity of Flora in the Botanical Gardens: Tradition, Modernity and Perspectives”, CSBG SB RAS, Novosibirsk, Russia, 1–8 August 2016; pp. 156–157. (In Russian). [Google Scholar]
- Bahramsoltani, R.; Sodagari, H.R.; Farzaei, M.H.; Abdolghaffari, A.H.; Gooshe, M.; Rezaei, N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev. Anti-Infect. Ther. 2016, 14, 57–80. [Google Scholar] [CrossRef]
- Kashiwada, Y.; Ahmed, F.A.; Kurimoto, S.; Kim, S.Y.; Shibata, H.; Fujioka, T.; Takaishi, Y. New α-glucosides of caffeoyl quinic acid from the leaves of Moringa oleifera Lam. J. Nat. Med. 2012, 66, 217–221. [Google Scholar] [CrossRef]
- Liu, K.C.; Fang, J.M.; Jan, J.T.; Cheng, T.J.; Wang, S.Y.; Yang, S.T.; Cheng, Y.S.; Wong, C.H. Enhanced anti-influenza agents conjugated with anti-inflammatory activity. J. Med. Chem. 2012, 55, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Huang, B.; Yu, K.; Shi, F.; Liu, T.; Xu, W. Caffeic acid derivatives: A new type of influenza neuraminidase inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 3556–3560. [Google Scholar] [CrossRef] [PubMed]
- Naithani, R.; Huma, L.C.; Holland, L.E.; Shukla, D.; McCormick, D.L.; Mehta, R.G.; Moriarty, R.M. Antiviral activity of phytochemicals: A comprehensive review. Mini Rev. Med. Chem. 2008, 8, 1106–1133. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2021, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Katalinic, V.; Mozina, S.S.; Skroza, D.; Generalic, I.; Abramovic, H.; Milos, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Radovanović, B.; Milenkovic Andjelkovic, A.; Radovanović, A.B.; Andjelkovic, M. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from Wild Berry Fruits Grown in Southeast Serbia. Trop. J. Pharm. Res. 2013, 12, 813–819. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Kiss, T.; Cank, K.B.; Orbán-Gyapai, O.; Liktor-Busa, E.; Zomborszki, Z.P.; Rutkovska, S.; Pučka, I.; Németh, A.; Csupor, D. Phytochemical and pharmacological investigation of Spiraea chamaedryfolia: A contribution to the chemotaxonomy of Spiraea genus. BMC Res. Notes 2017, 10, 762–768. [Google Scholar] [CrossRef]
- Kiss, T. Phytochemical, Pharmacological and Toxicological Studies of Alkaloid-and Sesquiterpene Lactone-Containing Medicinal Plants. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2017. [Google Scholar]
- Lei, Y.; Fu, P.; Jun, X.; Cheng, P. Pharmacological Properties of Geraniol—A Review. Planta Med. 2019, 85, 48–55. [Google Scholar] [CrossRef]
- De Lira, M.H.P.; De Andrade Júnior, F.P.; Moraes, G.F.Q.; Macena, G.S.; Pereira, F.O.; Lima, I.O. Antimicrobial activity of geraniol: An integrative review. J. Essent. Oil Res. 2020, 32, 187–197. [Google Scholar] [CrossRef]
- Leonova, T.; Popova, V.; Tsarev, A.; Henning, C.; Antonova, K.; Rogovskaya, N.; Vikhnina, M.; Baldensperger, T.; Soboleva, A.; Dinastia, E.; et al. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea (Pisum sativum L.) Seeds? Int. J. Mol. Sci. 2020, 21, 567. [Google Scholar] [CrossRef] [PubMed]
# | tR, min a | [M-H]− Observed (m/z) b | [M-H]− Theoretical (m/z) c | Elemental Composition d | ∆m, ppm | Fragmentation Patterns e | Annotation |
---|---|---|---|---|---|---|---|
1 f | 2.2 | 707.1816 | 707.1829 | C32H35O18− | 4.5 | 191.0618 (100), 353.0908 (60), 707.1861 (20) | Caffeoyl-quinic acid |
2 f | 2.8 | 465.0983 | 465.1038 | C21H21O12− | 10.8 | 151.0042 (70), 285.0373 (50), 465.0983 (100) | Dihydroquercetin-hexoside |
3 g | 2.9 | 439.1823 | 439.1762 | C18H31O12− | 0.5 | 131.0338 (15), 149.0442 (17), 165.0549 (10), 179.0554 (11), 191.0551 (8), 221.0658 (10), 251.0779 (5), 261.1331 (20), 311.1006 (5), 393.1762 (100), 439.1823 (40) | Hexopyranosyl-hexanoyl-hexopyranose |
4 f | 2.9 | 595.1358 | 595.1305 | C26H27O16− | 9 | 300.0281 (20), 595.1358 (100) | Quercetin hexosyl-pentoside |
5 f | 3.0 | 609.1474 | 609.1461 | C27H29O16− | −2.1 | 300.0262 (40), 609.1474 (100) | Quercetin-hexosyl-deoxy-hexoside |
6 g | 3.1 | 695.1402 | 695.1465 | C30H31O19− | 9.1 | 300.0271 (100), 651.1532 (70) | Quercetin acetyl-hexosyl-deoxy-hexoside |
7 f | 3.1 | 879.2546 | 879.2564 | C40H47O22− | 2.1 | 161.0251 (70), 179.0361 (20), 341.0881 (15), 439.1238 (100), 879.2546 (20) | Caffeoyl-hydroxy-methylbutyryl-pentoside |
8 f | 3.1 | 787.1808 | 787.1898 | C33H39O22− | 10.4 | 271.0258 (20), 300.0335 (70), 625.1462 (80), 787.1808 (100) | Quercetin-trihexoside |
9 f | 3.2 | 927.1833 | 927.1837 | C42H39O24− | 0.4 | 300.0298 (40), 463.0942 (100), 927.1833 (50) | Quercetin-hexoside |
10 g | 3.2 | 621.1452 | 621.1461 | C28H29O16− | 1.5 | 284.0336 (100), 285.0411 (40), 561.1245 (20), 579.1348 (30), 621.1452 (60) | Kaempferol-acetyl-pentopyranoside-hexopyranoside |
11 f | 3.2 | 1127.2887 | 1127.2891 | C52H55O28− | −0.2 | 285.0413 (40), 431.1023 (70), 563.1459 (100), 1127.2887 (10) | Kaempferol-pentosyl-deoxyhexoside |
12 g | 3.3 | 679.1510 | 679.1516 | C30H31O18− | 0.9 | 300.0281 (10), 637.1401 (30), 679.1510 (100) | Quercetin acetyl-ethyl-hexuronide-pentoside isomer 1 |
13 f | 3.3 | 757.1708 | 757.1622 | C35H33O19− | −10.3 | 161.0255 (10), 301.0363 (70), 455.1219 (15), 595.1360 (95), 757.1708 (100) | Caffeoyl pentoside-quercetin hexoside |
14 f | 3.4 | 1099.1840 | 1099.1850 | C48H43O30− | −0.5 | 300.0289 (40), 463.0878 (10), 505.1058 (100), 549.0901 (50), 1099.1840 (60) | Quercetin-malonyl-hexoside |
15 g | 3.4 | 679.1506 | 679.1516 | C30H31O18− | 1.5 | 300.0277 (10), 637.1398 (30), 679.1506 (100) | Quercetin acetyl-ethyl-hexuronide-pentoside isomer 2 |
16 g | 3.4 | 741.1661 | 741.1672 | C35H33O18− | 1.5 | 161.0238 (20), 285.0401 (30), 301.0346 (10), 455.1181 (100), 579.1339 (60), 595.1287 (63), 741.1661 (70) | Quercetin hexopyranosyl-O-p-coumaroyl-pentopyranoside |
17 f | 3.4 | 867.1605 | 867.1625 | C40H35O22− | 2.3 | 301.0365 (55), 433.0817 (100), 867.1605 (30) | Quercetin-pentoside |
18 f | 3.4 | 771.1816 | 771.1778 | C36H35O19− | −4.9 | 271.0255 (10), 300.0308 (90), 625.1417 (40), 771.1816 (100) | Quercetin-coumaroyl-dihexoside |
19 g | 3.4 | 847.2691 | 847.2663 | C40H47O20− | 2.9 | 145.0292 (10), 163.0398 (5), 325.0930 (15), 423.1296 (100), 847.2691 (3) | Coumaroyl hexoside derivatives |
20 | 3.5 | 537.1627 | 537.1614 | C25H29O13− | 2.5 | 125.0241 (20), 145.0332 (100), 231.0661 (15), 357.0968 (5), 433.1120 (5), 519.1497 (30), 537.1627 (30) | Unknown |
21 g | 3.8 | 893.2781 | 893.2721 | C41H49O22− | −6.7 | 147.0460 (20), 309.1000 (70), 423.1316 (20), 469.1369 (100), 893.2781 (3) | (Hydroxyphenyl)-oxopropenyl-glucopyranosyloxy-methylglutaric acid |
22 f | 3.9 | 537.1627 | 537.1614 | C25H29O13− | −2.4 | 135.0405 (95), 161.0240 (40), 179.0379 (100), 357.0975 (20), 519.1506 (20), 537.1627 (80) | Caffeoyl-loganic acid |
23 g | 4.0 | 493.2212 | 493.2231 | C29H33O7− | 3.9 | 131.0349 (20), 161.0455 (18), 315.1804 (100), 447.2212 (20) | Geranyl pentosyl-hexoside derivatives |
24 f | 4.2 | 1043.3410 | 1043.3400 | C50H59O24− | −0.9 | 163.0417 (60), 341.1044 (60), 503.1562 (60), 521.1708 (100), 1043.3412 (40) | p-Coumaroyl-loganic acid isomer 1 |
25 | 4.2 | 983.3212 | 983.3343 | C52H55O19− | 13.3 | 227.1286 (5), 285.0400 (10), 389.1801 (5), 593.1303 (100), 983.3212 (5) | Unknown |
26 g | 4.3 | 861.2806 | 861.2823 | C41H49O20− | 1.9 | 147.0458 (10), 407.1363 (20), 453.1416 (100), 861.2806 (3) | Coumaroyl hexoside derivatives |
27 g | 4.3 | 505.1700 | 505.1715 | C25H29O11− | 2.9 | 163.0401 (10), 179.0715 (40), 205.0509 (20), 235.0616 (25), 265.0717 (40), 307.0822 (100), 325.0930 (40), 487.1593 (95), 505.1700 (60) | Coumaroyl hexoside derivatives |
28 g | 4.4 | 491.1917 | 491.1923 | C25H31O10− | 1.2 | 179.0355 (10), 221.0462 (5), 251.0561 (10), 281.0675 (20), 341.0886 (3), 491.1917 (100) | Caffeoyl-hexopyranosy-dimethyl-octadienone |
29 f | 4.4 | 521.1639 | 521.1664 | C25H29O12− | 4.8 | 163.0389 (20), 341.1003 (15), 505.1668 (70), 521.1639 (100) | p-Coumaroyl-loganic acid isomer 2 |
30 | 4.5 | 819.2909 | 819.2870 | C43H47O16− | −4.8 | 147.0422 (100), 161.0578 (70), 189.0527 (80), 249.0708 (20), 409.1458 (95), 819.2909 (40) | Unknown |
31 g | 4.7 | 475.1970 | 475.1974 | C25H31O9− | 0.8 | 163.0409 (10), 205.0516 (20), 325.0627 (40), 265.0727 (100), 325.0939 (80), 475.1970 (40) | Phenylbytil-O-dihydrocoumaroyl-hexoside |
32 g | 4.9 | 667.2029 | 667.2032 | C34H35O14− | 3.9 | 163.0407 (40), 177.0568 (100), 265.0733 (15), 307.0836 (20), 485.1469 (90), 667.2058 (30) | Unknown derivatives of acetyl-di-feruloyl-glycerol |
33 f | 5.8 | 599.1803 | 599.1770 | C30H31O13− | −5.5 | 103.0558 (17), 147.0464 (100), 553.1734 (10), 599.1803 (30) | Trihydroxydihydrochalcone-siringoyl-hexoside |
Plant Species | DPPH Normalized Activity, % | TEAC, µmol/L eq. Trolox/µg | NBT Assay, nmol O2−/min |
---|---|---|---|
S. humilis | 99.470 ± 0.001 | 26.725 ± 0.007 | 21.240 ± 0.012 |
S. aquilegifolia | 85.141 ± 0.002 | 19.678 ± 0.018 | 25.107 ± 0.006 |
S. chamaedryfolia | 43.172 ± 0.002 | 14.218 ± 0.007 | 23.960 ± 0.016 |
S. trilobata | 79.691 ± 0.001 | 21.127 ± 0.019 | 24.320 ± 0.019 |
S. betulifolia | 84.957 ± 0.004 | 21.020 ± 0.007 | 21.342 ± 0.019 |
S. ussuriensis | 34.062 ± 0.001 | 13.915 ± 0.005 | 21.693 ± 0.003 |
S. media | 84.733 ± 0.001 | 21.664 ± 0.003 | 25.404 ± 0.011 |
S. salicifolia | 73.227 ± 0.009 | 21.161 ± 0.009 | 22.724 ± 0.013 |
S. pubescens | 56.639 ± 0.006 | 16.919 ± 0.008 | 22.920 ± 0.013 |
S. crenata | 44.607 ± 0.001 | 14.793 ± 0.007 | 28.169 ± 0.016 |
S. flexuosa | 31.811 ± 0.001 | 14.749 ± 0.005 | 24.071 ± 0.005 |
S. hypericifolia | 74.069 ± 0.001 | 20.466 ± 0.015 | 29.969 ± 0.034 |
S. elegans | 36.721 ± 0.001 | 14.329 ± 0.010 | 25.942 ± 0.007 |
S. sericea | 56.337 ± 0.001 | 16.917 ± 0.005 | 27.204 ± 0.008 |
S. salicifolia f. alpestris | 58.548 ± 0.002 | 18.752 ± 0.006 | 27.849 ± 0.011 |
DMSO (control) | - | - | 30.169 ± 0.041 |
Plant Species | CC50, µg/mL | IC50, µg/mL | SI |
---|---|---|---|
S. humilis | 59.2 | 3.8 | 16 |
S. aquilegifolia | 53.6 | 5.0 | 11 |
S. chamaedryfolia | 27.4 | 2.0 | 14 |
S. trilobata | 68.6 | >33.0 | 2 |
S. betulifolia | 50.9 | 13.8 | 4 |
S. ussuriensis | 19.0 | 1.0 | 19 |
S. media | 43.6 | >33.0 | 1 |
S. salicifolia | 31.1 | 2.0 | 16 |
S. pubescens | 48.9 | 12.1 | 4 |
S. crenata | 45.2 | 14.1 | 3 |
S. flexuosa | 25.3 | >11.0 | 2 |
S. hypericifolia | 45.3 | 19.2 | 2 |
S. elegans | 47.5 | 17.7 | 3 |
S. sericea | 44.4 | 13.8 | 3 |
S. salicifolia f. alpestris | 48.3 | 4.0 | 12 |
Rimantadine | 324 | 61 | 5 |
Oseltamivir carboxylate | >60 | 0.15 | >400 |
Plant Species | Activity (MICs, µg/mL) | |||||
---|---|---|---|---|---|---|
Microorganism Strain | ||||||
E.c. ATCC 25922 | P.a. ATCC 27853 | S.a. ATCC 25923 | MRSA ATCC 33591 | M.l. CIP A270 | L.m. EGD | |
S. humilis | 62.5 | 500 | 125 | 500 | 31.2 | 125 |
S.aquilegifolia | 125 | 2000 | 500 | 1000 | 1000 | 1000 |
S.chamaedryfolia | 125 | 2000 | 1000 | 1000 | 2000 | 4000 |
S.trilobata | 125 | 1000 | 1000 | 1000 | 2000 | 2000 |
S.betulifolia | 125 | 1000 | 500 | 2000 | 1000 | 2000 |
S.ussuriensis | 250 | 2000 | 1000 | 2000 | 4000 | 2000 |
S.media | 125 | 1000 | 250 | 1000 | 125 | 500 |
S.salicifolia | 125 | 1000 | 250 | 2000 | 1000 | 2000 |
S.pubescens | 125 | 1000 | 250 | 1000 | 4000 | 2000 |
S.crenata | 125 | 1000 | 500 | 1000 | 1000 | 2000 |
S.flexuosa | 125 | 1000 | 1000 | 2000 | 4000 | 4000 |
S.hypericifolia | 250 | 1000 | 1000 | 2000 | 4000 | 4000 |
S.elegans | 125 | 2000 | 1000 | 1000 | 4000 | 2000 |
S. sericea | 125 | 1000 | 1000 | 2000 | 4000 | 4000 |
S.salicifolia f. alpestris | 125 | 1000 | 250 | 2000 | 1000 | 1000 |
ID | Species | Localization of Sampling Site |
---|---|---|
I | S. media | Amur Oblast, Zeya c. env. |
II | S. betulifolia | Experimental field of CSBG SB RAS |
III | S. salicifolia f. alpestris | Experimental field of CSBG SB RAS |
IV | S. pubescens | Transbaikal region, Kalga settl. env. |
V | S. humilis | Khabarovsk Krai, Selikhino vill. env. |
VI | S. flexuosa | Experimental field of CSBG SB RAS |
VII | S. hypericifolia | Novosibirsk Oblast, Steklyannoye vill. env. |
VIII | S. aquilegifolia | Rep. of Buryatia, Ivolginsk vill. env. |
IX | S. sericea | Amur Oblast, Sergeevka settl. env. |
X | S. trilobata | Rep. of Altai, Ust-Koksa vill. env. |
XI | S. ussuriensis | Amur Oblast, Sergeevka settl. env. |
XII | S. chamaedryfolia | Experimental field of CSBG SB RAS |
XIII | S. crenata | Novosibirsk Oblast, Shibkovo vill. env. |
XIV | S. elegans | Zabaykalsky Krai, Mogocha c. env. |
XV | S. salicifolia | Experimental field of CSBG SB RAS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlova, A.; Soboleva, A.; Tsvetkova, E.; Silinskaia, S.; Esaulkova, Y.L.; Veklich, T.N.; Zarubaev, V.V.; Khakulova, A.A.; Akberdin, I.R.; Kolmykov, S.K.; et al. Biological Potential of Methanol Extracts from Plants of the Genus Spiraea Spreading in Russia. Int. J. Mol. Sci. 2025, 26, 3587. https://doi.org/10.3390/ijms26083587
Orlova A, Soboleva A, Tsvetkova E, Silinskaia S, Esaulkova YL, Veklich TN, Zarubaev VV, Khakulova AA, Akberdin IR, Kolmykov SK, et al. Biological Potential of Methanol Extracts from Plants of the Genus Spiraea Spreading in Russia. International Journal of Molecular Sciences. 2025; 26(8):3587. https://doi.org/10.3390/ijms26083587
Chicago/Turabian StyleOrlova, Anastasia, Alena Soboleva, Elena Tsvetkova, Svetlana Silinskaia, Yana L. Esaulkova, Tatiana N. Veklich, Vladimir V. Zarubaev, Anna A. Khakulova, Ilya R. Akberdin, Semyon K. Kolmykov, and et al. 2025. "Biological Potential of Methanol Extracts from Plants of the Genus Spiraea Spreading in Russia" International Journal of Molecular Sciences 26, no. 8: 3587. https://doi.org/10.3390/ijms26083587
APA StyleOrlova, A., Soboleva, A., Tsvetkova, E., Silinskaia, S., Esaulkova, Y. L., Veklich, T. N., Zarubaev, V. V., Khakulova, A. A., Akberdin, I. R., Kolmykov, S. K., Kostikova, V. A., & Frolov, A. (2025). Biological Potential of Methanol Extracts from Plants of the Genus Spiraea Spreading in Russia. International Journal of Molecular Sciences, 26(8), 3587. https://doi.org/10.3390/ijms26083587