Combined Immune Checkpoint Blockade and Helixor® Therapy in Oncology: Real-World Tolerability and Subgroup Survival (ESMO GROW)
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Anti-Neoplastic Treatment
2.3. Antineoplastic Treatment in Patients with Non-Small Cell Lung (NSCLC) Cancer
2.4. Antineoplastic Treatment in Female Patients with NSCLC
2.5. Add-On HVA Treatment
2.6. Tolerability of ICB with and Without HVA
2.7. Effectivenss of Immune Checkpoint Blockade with and Without HVA
2.7.1. Effectiveness of ICB and HVA in a Subgroup of Patients with NSCLC
2.7.2. Effectiveness of ICB and HVA in a Subgroup of Female NSCLC Patients
2.7.3. Hazard of Death, Subgroup Female NSCLC
3. Discussion
Limitations and Strength
4. Materials and Methods
4.1. Study Design
4.1.1. Patient Enrollment and Treatment
4.1.2. Study Objectives
4.1.3. Eligibility Criteria and Data Collection
4.1.4. Follow-Up
4.2. Interdisciplinary Team
4.3. Ethics Issues
4.4. Classification of Groups
4.5. Determination of Sample Size
4.6. Statistical Methods
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bicak, M.; Cimen Bozkus, C.; Bhardwaj, N. Checkpoint therapy in cancer treatment: Progress, challenges, and future directions. J. Clin. Investig. 2024, 134, e184846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, X.; Zhang, J.; Chen, S.; Wang, X.; Xi, Q.; Shen, H.; Zhang, R. Immune checkpoint inhibitors: Breakthroughs in cancer treatment. Cancer Biol. Med. 2024, 21, 451–472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, A.; Wang, K.; Penn Medicine. Combo Immunotherapy Makes Waves of Cancer-Fighting T Cells; Penn Medicine: Philadelphia, PA, USA, 2024; Available online: https://www.pennmedicine.org/news/news-releases/2024 (accessed on 9 April 2025).
- Schad, F.; Thronicke, A.; Hofheinz, R.-D.; Matthes, H.; Grah, C. Patients with Advanced or Metastasised Non-Small-Cell Lung Cancer with Viscum album L. Therapy in Addition to PD-1/PD-L1 Blockade: A Real-World Data Study. Cancers 2024, 16, 1609. [Google Scholar] [CrossRef] [PubMed]
- Schad, F.; Thronicke, A.; Hofheinz, R.D.; Klein, R.; Grabowski, P.; Oei, S.L.; Wüstefeld, H.; Grah, C. Immune Checkpoint Blockade Combined with AbnobaViscum® Therapy Is Linked to Improved Survival in Advanced or Metastatic Non-Small-Cell Lung Cancer Patients: A Registry Study in Accordance with the ESMO Guidance for Reporting Real-World Evidence. Pharmaceuticals 2024, 17, 1713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Komplementärmedizin in der Behandlung von Onkologischen PatientInnen, Langversion 2.0, 2024 AWMF Registernummer: 032/055OL. Available online: https://www.leitlinienprogramm-onkologie.de/leitlinien/komplementaermedizin/ (accessed on 9 April 2025).
- Thronicke, A.; Steele, M.L.; Grah, C.; Matthes, B.; Schad, F. Clinical safety of combined therapy of immune checkpoint inhibitors and Viscum album L. therapy in patients with advanced or metastatic cancer. BMC Complement. Altern. Med. 2017, 17, 534. [Google Scholar] [CrossRef] [PubMed]
- Fuller-Shavel, N.; Krell, J. Integrative Oncology Approaches to Supporting Immune Checkpoint Inhibitor Treatment of Solid Tumours. Curr. Oncol. Rep. 2024, 26, 164–174. [Google Scholar] [CrossRef]
- Oei, S.L.; Kunc, K.; Reif, M.; Weissenstein, U.; Weiß, T.; Wüstefeld, H.; Matthes, H.; Grah, C. Prospective observational study of advanced or metastatic NSCLC patients treated with Viscum album L. extracts in combination wih PD-1/PD-L1 blockade (PHOENIX-III). Oncol. Res. Treat. 2024, 42, 239–241. [Google Scholar] [CrossRef]
- Loef, M.; Walach, H. Quality of life in cancer patients treated with mistletoe: A systematic review and meta-analysis. BMC Complement. Med. Ther. 2020, 20, 227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horneber, M.; van Ackeren, G.; Linde, K.; Rostock, M. Mistletoe therapy in oncology. Cochrane Database Syst. Rev. 2008, 2008, CD003297. [Google Scholar] [CrossRef]
- Loef, M.; Walach, H. Survival of Cancer Patients Treated with Non-Fermented Mistletoe Extract: A Systematic Review and Meta-Analysis. Integr. Cancer Ther. 2022, 21, 15347354221133561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hofinger, J.; Kaesmann, L.; Buentzel, J.; Scharpenberg, M.; Huebner, J. Systematic assessment of the influence of quality of studies on mistletoe in cancer care on the results of a meta-analysis on overall survival. J. Cancer Res. Clin. Oncol. 2024, 150, 219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, J.; Heo, Y.J.; Park, S. High tumor mutational burden predicts favorable response to anti-PD-(L)1 therapy in patients with solid tumor: A real-world pan-tumor analysis. J. Immunother. Cancer 2023, 11, e006454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.; Huang, X.; Shi, F.; Song, J.; Guo, C.; Yang, J.; Liang, T.; Bai, X. Combination therapy for pancreatic cancer: Anti-PD-(L)1-based strategy. J. Exp. Clin. Cancer Res. 2022, 41, 56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wode, K.; Kienle, G.S.; Björ, O.; Fransson, P.; Sharp, L.; Elander, N.O.; Bernhardson, B.M.; Johansson, B.; Ardnor, C.E.; Scheibling, U.; et al. Mistletoe extract in patients with advanced pancreatic cancer: A double-blind, randomized, placebo-controlled trial (MISTRAL). Dtsch. Arztebl. Int. 2024, 121, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Piao, B.K.; Wang, Y.X.; Xie, G.R.; Mansmann, U.; Matthes, H.; Beuth, J.; Lin, H.S. Impact of complementary mistletoe extract treatment on quality of life in breast, ovarian and non-small cell lung cancer patients. A prospective randomized controlled clinical trial. Anticancer Res. 2004, 24, 303–309. [Google Scholar] [PubMed]
- Oei, S.L.; Thronicke, A.; Schad, F. Mistletoe and Immunomodulation: Insights and Implications for Anticancer Therapies. Evid. Based Complement. Alternat Med. 2019, 2019, 5893017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tröger, W.; Zdrale, Z.; Tišma, N.; Matijašević, M. Additional Therapy with a Mistletoe Product during Adjuvant Chemotherapy of Breast Cancer Patients Improves Quality of Life: An Open Randomized Clinical Pilot Trial. Evid. Based Complement. Alternat Med. 2014, 2014, 430518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kienle, G.S.; Kiene, H. Review article: Influence of Viscum album L (European mistletoe) extracts on quality of life in cancer patients: A systematic review of controlled clinical studies. Integr. Cancer Ther. 2010, 9, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Thronicke, A.; Oei, S.L.; Merkle, A.; Matthes, H.; Schad, F. Clinical Safety of Combined Targeted and Viscum album L. Therapy in Oncological Patients. Medicines 2018, 5, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schad, F.; Thronicke, A. Safety of Combined Targeted and Helixor® Viscum album L. Therapy in Breast and Gynecological Cancer Patients, a Real-World Data Study. Int. J. Environ. Res. Public Health 2023, 20, 2565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartlett, V.L.; Dhruva, S.S.; Shah, N.D.; Ryan, P.; Ross, J.S. Feasibility of Using Real-World Data to Replicate Clinical Trial Evidence. JAMA Netw. Open 2019, 2, e1912869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, K.H.; Berger, M.L. Real-World Data and Real-World Evidence in Healthcare in the United States and Europe Union. Bioengineering 2024, 11, 784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Your Say. Best Practices for Clinical Registries While Leveraging Real World Evidence. PLOS, n.d. Available online: https://yoursay.plos.org/ (accessed on 9 April 2025).
- Schad, F.; Thronicke, A. Real-World Evidence-Current Developments and Perspectives. Int. J. Environ. Res. Public Health 2022, 19, 10159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernandez, I.; Lu, C. Real-world data and its potential in oncology: A review of the current landscape and future directions. J. Clin. Oncol. 2021, 39, 456–468. [Google Scholar]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.M.; Esteban, E.; Garassino, M.C. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 2020, 382, 2078–2092. [Google Scholar] [CrossRef]
- Thronicke, A.; Schad, F.; Debus, M.; Grabowski, J.; Soldner, G. Viscum album L. Therapy in Oncology: An Update on Current Evidence. Complement. Med. Res. 2022, 29, 362–368. (In English) [Google Scholar] [CrossRef] [PubMed]
- Loewe-Mesch, A.; Kuehn, J.J.; Borho, K.; Abel, U.; Bauer, C.; Gerhard, I.; Schneeweiss, A.; Sohn, C.; Strowitzki, T.; v Hagens, C. Adjuvant simultaneous mistletoe chemotherapy in breast cancer--influence on immunological parameters, quality of life and tolerability. Forsch. Komplementmed. 2008, 15, 22–30. [Google Scholar] [CrossRef]
- Schad, F.; Steinmann, D.; Oei, S.L.; Thronicke, A.; Grah, C. Evaluation of quality of life in lung cancer patients receiving radiation and Viscum album L.: A real-world data study. Radiat. Oncol. 2023, 18, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schad, F.; Axtner, J.; Kroz, M.; Matthes, H.; Steele, M.L. Safety of Combined Treatment with Monoclonal Antibodies and Viscum album L Preparations. Integr. Cancer Ther. 2018, 17, 41–51. [Google Scholar] [CrossRef]
- Grzywacz, J.G.; Quandt, S.A.; Neiberg, R.; Lang, W.; Bell, R.A.; Arcury, T.A. Age-related differences in the conventional health care-complementary and alternative medicine link. Am. J. Health Behav. 2008, 32, 650–663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, Y.; Jing, Y.; Li, L.; Mills, G.B.; Diao, L.; Liu, H.; Han, L. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 2020, 11, 1779. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madala, S.; Rasul, R.; Singla, K.; Sison, C.P.; Seetharamu, N.; Castellanos, M.R. Gender Differences and Their Effects on Survival Outcomes in Lung Cancer Patients Treated with PD-1/PD-L1 Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Clin. Oncol. (R. Coll. Radiol.) 2022, 34, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Tang, Y.Y.; Wan, J.X.; Zou, J.Y.; Lu, C.G.; Zhu, H.S.; Sheng, S.Y.; Wang, Y.F.; Liu, H.C.; Yang, J.; et al. Sex difference in the expression of PD-1 of non-small cell lung cancer. Front. Immunol. 2022, 13, 1026214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ortona, E.; Pierdominici, M.; Rider, V. Editorial: Sex Hormones and Gender Differences in Immune Responses. Front. Immunol. 2019, 10, 1076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Migliore, L.; Nicolì, V.; Stoccoro, A. Gender Specific Differences in Disease Susceptibility: The Role of Epigenetics. Biomedicines 2021, 9, 652. [Google Scholar] [CrossRef]
- Klein, S.L.; Morgan, R. The impact of sex and gender on immunotherapy outcomes. Biol. Sex. Differ. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Denizer, G.M.A.; Sahin, N.H. Use of Complementary and Integrative Medicine in Women’s Health: A Literature Review. Mediterr. Nurs. Midwifery 2024, 4, 73–80. [Google Scholar] [CrossRef]
- Tröger, W.; Galun, D.; Reif, M.; Schumann, A.; Stanković, N.; Milićević, M. Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: A randomised clinical trial on overall survival. Eur. J. Cancer 2013, 49, 3788–3797. [Google Scholar] [CrossRef] [PubMed]
- Schad, F.; Thronicke, A.; Steele, M.L.; Merkle, A.; Matthes, B.; Grah, C.; Matthes, H. Overall survival of stage IV non-small cell lung cancer patients treated with Viscum album L. in addition to chemotherapy, a real-world observational multicenter analysis. PLoS ONE 2018, 13, e0203058, Erratum in PLoS ONE 2022, 17, e0273387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saha, C.; Das, M.; Stephen-Victor, E.; Friboulet, A.; Bayry, J.; Kaveri, S.V. Differential Effects of Viscum album Preparations on the Maturation and Activation of Human Dendritic Cells and CD4⁺ T Cell Responses. Molecules 2016, 21, 912, Erratum in Molecules 2019, 24, 3762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, L.; Phalke, S.; Stevigny, C.; Souard, F.; Vermijlen, D. Mistletoe-Extract Drugs Stimulate Anti-Cancer Vgamma9Vdelta2 T Cells. Cells 2020, 9, 1560. [Google Scholar] [CrossRef] [PubMed]
- de Vries, N.L.; van de Haar, J.; Veninga, V.; Chalabi, M.; Ijsselsteijn, M.E.; van der Ploeg, M.; van den Bulk, J.; Ruano, D.; van den Berg, J.G.; Haanen, J.B.; et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 2023, 613, 743–750. [Google Scholar] [CrossRef]
- Gémes, N.; Balog, J.Á.; Neuperger, P.; Schlegl, E.; Barta, I.; Fillinger, J.; Antus, B.; Zvara, Á.; Hegedűs, Z.; Czimmerer, Z.; et al. Single-cell immunophenotyping revealed the association of CD4+ central CD4+ effector memory T cells linking exacerbating chronic obstructive pulmonary disease and NSCLC. Front. Immunol. 2023, 14, 1297577. [Google Scholar] [CrossRef] [PubMed]
- Nada, M.H.; Wang, H.; Hussein, A.J.; Tanaka, Y.; Morita, C.T. PD-1 checkpoint blockade enhances adoptive immunotherapy by human Vgamma2Vdelta2 T cells against human prostate cancer. Oncoimmunology 2021, 10, 1989789. [Google Scholar] [CrossRef] [PubMed]
- Keene, M.R.; Heslop, I.M.; Sabesan, S.S.; Glass, B.D. Complementary and alternative medicine use in cancer: A systematic review. Complement. Ther. Clin. Pract. 2019, 35, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Molassiotis, A.; Fernández-Ortega, P.; Pud, D.; Ozden, G.; Scott, J.A.; Panteli, V.; Margulies, A.; Browall, M.; Magri, M.; Selvekerova, S.; et al. Use of complementary and alternative medicine in cancer patients: A European survey. Ann Oncol. 2005, 16, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Schad, F.; Axtner, J.; Happe, A.; Breitkreuz, T.; Paxino, C.; Gutsch, J.; Matthes, B.; Debus, M.; Kröz, M.; Spahn, G.; et al. Network Oncology (NO)—A clinical cancer registry for health services research and the evaluation of integrative therapeutic interventions in anthroposophic medicine. Forsch. Komplementmed. 2013, 20, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, L.; Pellat, A.; Martins-Branco, D.; Valachis, A.; Derksen, J.W.G.; Suijkerbuijk, K.P.M.; Dafni, U.; Dellaporta, T.; Vogel, A.; Prelaj, A.; et al. ESMO Guidance for Reporting Oncology real-World evidence (GROW). Ann. Oncol. 2023, 34, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, D.A. Sample-size formula for the proportional-hazards regression model. Biometrics 1983, 39, 499–503. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 9 April 2025).
- Gerds, T.A. prodlim: Product-Limit Estimation for Censored Event History Analysis. R Package, Version 2019.11.13. 2019. Available online: https://CRAN.R-project.org/package=prodlim (accessed on 9 April 2025).
- Kassambara, A.; Kosinski, M.; Biecek, P. survminer: Drawing Survival Curves Using ‘ggplot2’. R Package Version 0.4.9. 2021. Available online: https://CRAN.R-project.org/package=survminer (accessed on 9 April 2025).
Total Cohort (n = 405) | CTRL (n = 344) | COMB (n = 61) | p-Value | |
---|---|---|---|---|
Age at first diagnosis, median years (IQR) | 66 (59–74) | 67 (60–75) | 63 (56–69) | 0.02 |
Gender | 0.54 | |||
Female, n (%) | 194 (47.9) | 162 (47.1) | 32 (52.5) | |
Male, n (%) | 210 (51.9) | 181 (52.6) | 29 (47.5) | |
Tumor type | <0.001 | |||
Bronchus and lung cancer, n (%) | 319 (78.8) | 285 (82.8) | 34 (55.7) | |
Breast cancer, n (%) | 29 (7.2) | 15 (4.4) | 14 (23.0) | |
Melanoma, n (%) | 13 (3.2) | 9 (2.6) | 4 (6.6) | |
Kidney cancer, n (%) | 10 (2.5) | 10 (2.9) | 0 | |
Urinary cancer, n (%) | 5 (1.2) | 4 (1.2) | 1 (1.6) | |
Mesothelioma of pleura, n (%) | 4 (1.0) | 4 (1.2) | 0 | |
Bladder cancer, n (%) | 4 (1.0) | 3 (0.9) | 1 (1.6) | |
Esophagus cancer, n (%) | 4 (1.0) | 2 (0.6) | 2 (3.3) | |
Colon cancer, n (%) | 3 (0.7) | 3 (0.9) | 0 | |
Liver and intrahepatic bile duct cancer, n (%) | 2 (0.5) | 1 (0.3) | 1 (1.6) | |
Cervix uteri cancer, n (%) | 2 (0.5) | 2 (0.6) | 0 | |
Hodgkin-lymphoma, n (%) | 1 (0.2) | 0 | 1 (1.6) | |
Extrahepatic bile duct cancer, n (%) | 1 (0.2) | 0 | 1 (1.6) | |
Laryngeal cancer, n (%) | 1 (0.2) | 0 | 1 (1.6) | |
Stomach cancer, n (%) | 1 (0.2) | 1 (0.3) | 0 | |
Anal cancer, n (%) | 1 (0.2) | 0 | 1 (1.6) | |
Extrahepatic bile duct cancer, n (%) | 1 (0.2) | 1 (0.3) | 0 | |
Malignant neoplasm of parotid gland, n (%) | 1 (0.2) | 1 (0.3) | 0 | |
Malignant neoplasm of tonsil, n (%) | 1 (0.2) | 1 (0.3) | 0 | |
Malignant neoplasm without specification of site, n (%) | 1 (0.2) | 1 (0.3) | 0 | |
Endometrium cancer, n (%) | 1 (0.2) | 1 (0.3) | 0 | |
Tumor stage according to UICC | 0.14 | |||
Early stage, I + II, n (%) | 32 (7.9) | 24 (7.0) | 8 (13.1) | |
Advanced stage, III + IV, n (%) | 340 (84.0) | 295 (85.8) | 45 (73.8) | |
NA, n (%) | 32 (7.9) | 24 (7.0) | 8 (13.1) |
Total Cohort (n = 405) | CTRL (n = 344) | COMB (n = 61) | p-Value | |
---|---|---|---|---|
Radiation, n (%) | 207 (51.1) | 170 (49.4) | 37 (60.7) | 0.139 |
Surgery, n (%) | 98 (24.2) | 79 (23.0) | 19 (31.1) | 0.225 |
Chemotherapy, n (%) | 361 (89.1) | 311 (90.4) | 50 (82.0) | 0.08 |
Hormone therapy, n (%) | 4 (1.0) | 4 (1.2) | 0 | 0.885 |
PD-L1/PD-1/CTL-A4 inhibitors, n (%) | 0.189 | |||
PD-L1 inhibitor, n (%) | 103 (25.4) | 84 (24.4) | 19 (31.1) | |
of these first-line PD-L1 inhibitor, n (%) | 70 (17.3) | 60 (17.4) | 10 (16.4) | |
PD-1 inhibitors, n (%) | 288 (71.1)) | 250 (72.7) | 38 (62.3) | |
of these first-line PD-1 inhbitors, n (%) | 176 (43.5) | 160 (46.5) | 16 (26.2) | |
CTL-A4 inhibitors, n (%) | 3 (0.7) | 2 (0.6) | 2 (3.3) | |
of these first-line CTL-A4 inhibitors, n (%) | 0 | 0 | 0 | |
PD-1/CTL-A4 inhibitors, n (%) | 10 (2.7) | 8 (2.3) | 2 (3.3) | |
of these first-line PD-1/CTL-A4 inhibitors, n (%) | 3 (0.7) | 3 (0.9) | 0 | |
First-line ICB | 249 (61.5) | 223 (64.8) | 26 (42.6) | 0.002 |
Total Cohort (n = 312) | CTRL (n = 285) | COMB (n = 34) | p-Value | |
---|---|---|---|---|
Radiation, n (%) | 171 (54.8) | 148 (51.9) | 23 (67.6) | 0.12 |
Surgery, n (%) | 65 (20.8) | 56 (19.7)) | 9 (26.5) | 0.48 |
Chemotherapy, n (%) | 298 (95.5) | 268 (94.0) | 30 (88.2) | 0.36 |
PD-L1/PD-1/CTL-A4 inhibitors, n (%) | 0.52 | |||
PD-L1 inhibitors, n (%) | 87 (27.9) | 76 (26.7)) | 11 (32.4) | |
first-line PD-L1 inhibitors, n (%) | 66 (21.2) | 58 (20.4) | 8 (23.5) | |
PD-1 inhibitors, n (%) | 226 (72.4) | 203 (71.2) | 23 (67.6) | |
first-line PD-1 inhbitors, n (%) | 153 (49.0) | 43 (50.2) | 10 (29.4) | |
CTL-A4 inhibitors, n (%) | 1 (0.3) | 1 (0.4) | 0 | |
first-line CTL-A4 inhibitors, n (%) | 0 | 0 | 0 | |
PD-1/CTL-A4 inhibitor, n (%) | 5 (1.6) | 5 (1.8) | 0 | |
first-line PD-1/CTL-A4 inhibitors, n (%) | 3 (1.0) | 3 (1.1) | 0 | |
First-line ICB | 222 (71.2) | 204 (71.6) | 18 (52.9) | 0.03 |
Total Cohort (n = 139) | CTRL (n = 127) | COMB (n = 12) | p-Value | |
---|---|---|---|---|
Radiation, n (%) | 75 (54.0) | 67 (52.8) | 8 (66.7) | 0.535 |
Surgery, n (%) | 27 (19.4) | 23 (18.1) | 4 (33.3) | 0.372 |
Chemotherapy, n (%) | 131 (94.2) | 120 (94.5) | 11 (91.7) | 1 |
PD-L1/PD-1/CTL-A4 inhibitors, n (%) | 0.765 | |||
PD-L1 inhibitors, n (%) | 38 (27.3) | 35 (27.6) | 3 (25.0) | |
first-line PD-L1 inhibitors, n (%) | 26 (18.7) | 24 (18.9) | 2 (16.7) | |
PD-1 inhibitors, n (%) | 100 (71.9) | 91 (71.7) | 9 (75.0) | |
first-line PD-1 inhibitors, n (%) | 63 (45.3) | 60 (47.2) | 3 (25.0) | |
CTL-A4 inhibitors, n (%) | 1 (0.7) | 1 (0.8) | 0 | |
first-line CTL-A4 inhibitors, n (%) | 0 | 0 | 0 | |
PD-1/CTL-A4 inhibitor, n (%) | 0 | 0 | 0 | |
first-line PD-1/CTL-A4 inhibitors, n (%) | 0 | 0 | 0 | |
First-line ICB | 89 (64.0) | 84 (66.1) | 5 (41.7) | 0.158 |
Helixor® A, i.v. | Helixor® A, s.c. | Helixor® M, i.v. | Helixor® P, i.v. | Helixor® P, s.c. | Helixor® P, NA | |
---|---|---|---|---|---|---|
Mono, no combination, n (%) | 13 (21.3) | 5 (8.2) | 10 (16.4) | 23 (37.7) | 1 (1.6) | 1 (1.6) |
Helixor® A, s.c., n (%) | 5 (8.2) | 0 | 0 | 0 | 0 | 0 |
Helixor® M, s.c., n (%) | 0 | 0 | 1 (1.6) | 0 | 0 | 0 |
Helixor® P, s.c., n (%) | 0 | 0 | 0 | 1 (1.6) | 0 | 0 |
n | Events | Median [months] | 95% CI [months] | |
NSCLC, CTRL | 278 | 160 | 14.1 | 11.7–18.2 |
NSCLC, COMB | 34 | 20 | 16.9 | 13.2–NA |
Log rank test X2 = 1.8, p = 0.2 |
n | Events | Median [months] | 95% CI [months] | |
NSCLC female, CTRL | 125 | 66 | 15.9 | 11.9–23.6 |
NSCLC female, COMB | 12 | 4 | NA | 19.3–NA |
Log rank test X2 = 3.6, p = 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thronicke, A.; Grabowski, P.; Roos, J.; Wüstefeld, H.; Grah, C.; Johnson, S.; Schad, F. Combined Immune Checkpoint Blockade and Helixor® Therapy in Oncology: Real-World Tolerability and Subgroup Survival (ESMO GROW). Int. J. Mol. Sci. 2025, 26, 3669. https://doi.org/10.3390/ijms26083669
Thronicke A, Grabowski P, Roos J, Wüstefeld H, Grah C, Johnson S, Schad F. Combined Immune Checkpoint Blockade and Helixor® Therapy in Oncology: Real-World Tolerability and Subgroup Survival (ESMO GROW). International Journal of Molecular Sciences. 2025; 26(8):3669. https://doi.org/10.3390/ijms26083669
Chicago/Turabian StyleThronicke, Anja, Patricia Grabowski, Juliane Roos, Hannah Wüstefeld, Christian Grah, Sophia Johnson, and Friedemann Schad. 2025. "Combined Immune Checkpoint Blockade and Helixor® Therapy in Oncology: Real-World Tolerability and Subgroup Survival (ESMO GROW)" International Journal of Molecular Sciences 26, no. 8: 3669. https://doi.org/10.3390/ijms26083669
APA StyleThronicke, A., Grabowski, P., Roos, J., Wüstefeld, H., Grah, C., Johnson, S., & Schad, F. (2025). Combined Immune Checkpoint Blockade and Helixor® Therapy in Oncology: Real-World Tolerability and Subgroup Survival (ESMO GROW). International Journal of Molecular Sciences, 26(8), 3669. https://doi.org/10.3390/ijms26083669