Curcumin: A Magical Small Molecule with a Large Role in Active-Intelligent Degradable Food Packaging
Abstract
:1. Introduction
2. Structure, Physicochemical Properties and Biological Activities of Curcumin
3. The Potential Roles of Curcumin in Active-Intelligent Biodegradable Food Packaging
3.1. Acting as an Antioxidant
3.2. Acting as an Antibacterial Agent
3.3. Acting as a Monitor
3.4. Acting as a Mechanical Property Enhancer
4. Curcumin-Loading Methods in Active-Intelligent Biodegradable Food Packaging
4.1. Loading Through Adding Directly
4.2. Loading Through Emulsification
4.3. Loading Through Curcumin Nanoencapsulation
4.4. Loading Through Grafting
4.5. Loading Through Cyclodextrin
5. Preparation Methods of Active-Intelligent Biodegradable Food Packaging with Curcumin
5.1. Extrusion
5.2. Solution Casting
5.3. Electrospinning Technology
6. Application of Curcumin-Loaded Active-Intelligent Food Packaging
6.1. Application for Meat Packaging
6.2. Application for Seafood Packaging
6.3. Application for Fruit and Vegetable Packaging
6.4. Application for Oil Packaging
7. Impact of Curcumin Migration from Active Packaging on Food Safety
8. The Possibility of Curcumin Release into Packaged Food Products, the Stability of Packaging over Time, and Its Biodegradability
8.1. Curcumin Release into Packaged Food Products
8.2. Stability of Packaging over Time
8.3. Biodegradability of Packaging Materials
9. Future Work and Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Kusuma, H.S.; Yugiani, P.; Himana, A.I.; Aziz, A.; Putra, D.A.W. Reflections on Food Security and Smart Packaging. Polym. Bull. 2024, 81, 87–133. [Google Scholar] [CrossRef] [PubMed]
- Lacourt, C.; Mukherjee, K.; Garthoff, J.; O’Sullivan, A.; Meunier, L.; Fattori, V. Recent and Emerging Food Packaging Alternatives: Chemical Safety Risks, Current Regulations, and Analytical Challenges. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70059. [Google Scholar] [CrossRef] [PubMed]
- Ghasemlou, M.; Barrow, C.J.; Adhikari, B. The Future of Bioplastics in Food Packaging: An Industrial Perspective. Food Packag. Shelf Life 2024, 43, 101279. [Google Scholar] [CrossRef]
- Ranade, T.; Sati, A.; Pratap, A.; Mali, S.N. Curcumin-Integrated Biopolymer Films for Active Packaging: Current Trends and Future Directions. Chem. Pap. 2025, 79, 1303–1334. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Y. Advances in Bio-Based Smart Food Packaging for Enhanced Food Safety. Trends Food Sci. Technol. 2025, 159, 104960. [Google Scholar] [CrossRef]
- Kumar, L.; Gaikwad, K.K. Advanced Food Packaging Systems for Space Exploration Missions. Life Sci. Space Res. 2023, 37, 7–14. [Google Scholar] [CrossRef]
- Yao, Q.; Huang, F.; Lu, Y.; Huang, J.; Ali, M.; Jia, X.-Z.; Zeng, X.-A.; Huang, Y. Polysaccharide-Based Food Packaging and Intelligent Packaging Applications: A Comprehensive Review. Trends Food Sci. Technol. 2024, 147, 104390. [Google Scholar] [CrossRef]
- Zhao, P.; Zheng, D.; Li, T.; Peng, H.; He, J.; Shi, J.; Zhao, J.; Li, P.; Zhang, W. Maillard Reaction Based Chitosan-Monosaccharide Films and the Application in Fruit Preservation. Food Hydrocoll. 2025, 166, 111269. [Google Scholar] [CrossRef]
- Yan, M.R.; Hsieh, S.; Ricacho, N. Innovative Food Packaging, Food Quality and Safety, and Consumer Perspectives. Processes 2022, 10, 747. [Google Scholar] [CrossRef]
- Upadhyay, A.; Agbesi, P.; Arafat, K.M.Y.; Urdaneta, F.; Dey, M.; Basak, M.; Hong, S.; Umeileka, C.; Argyropoulos, D. Bio-Based Smart Packaging: Fundamentals and Functions in Sustainable Food Systems. Trends Food Sci. Technol. 2024, 145, 104369. [Google Scholar] [CrossRef]
- Frangopoulos, T.; Marinopoulou, A.; Petridis, D.; Rhoades, J.; Likotrafiti, E.; Goulas, A.; Fetska, S.; Flegka, D.; Mati, E.; Tosounidou, A.; et al. Films from Starch Inclusion Complexes with Bioactive Compounds as Food Packaging Material. Food Bioprocess Technol. 2025, 1–16. [Google Scholar] [CrossRef]
- Drago, E.; Campardelli, R.; Pettinato, M.; Perego, P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020, 9, 1628. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, R.; Ren, T. Fabrication of Gelatin-Based Photodynamic Food Packaging with Dual-Antimicrobial Activity for Enhanced Pork Preservation. Food Hydrocoll. 2025, 166, 111361. [Google Scholar] [CrossRef]
- Miao, Z.; Yang, M.; Abdalkarim, S.Y.H.; Yu, H.-Y. In Situ Growth of Curcumin-Loaded Cellulose Composite Film for Real-Time Monitoring of Food Freshness in Smart Packaging. Int. J. Biol. Macromol. 2024, 279, 135090. [Google Scholar] [CrossRef]
- Gan, C.; Wang, J.; Yuan, Z.; Cui, M.; Sun, S.; Alharbi, M.; Alasmari, A.F.; Du, W.; Zhang, X.; Yang, D.-P. Polysaccharide- and Protein-Based Edible Films Combined with Microwave Technology for Meat Preservation. Int. J. Biol. Macromol. 2024, 270, 132233. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Shen, R.; Yang, X. Characterizations of Novel Konjac Glucomannan Emulsion Films Incorporated with High Internal Phase Pickering Emulsions. Food Hydrocoll. 2020, 109, 106088. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Li, N.; Yang, X. Characterization of Konjac Glucomannan-Based Active Films Loaded with Thyme Essential Oil: Effects of Loading Approaches. Food Hydrocoll. 2022, 124, 107330. [Google Scholar] [CrossRef]
- Ni, Y.; Nie, H.; Wang, J.; Lin, J.; Wang, Q.; Sun, J.; Zhang, W.; Wang, J. Enhanced Functional Properties of Chitosan Films Incorporated with Curcumin-Loaded Hollow Graphitic Carbon Nitride Nanoparticles for Bananas Preservation. Food Chem. 2022, 366, 130539. [Google Scholar] [CrossRef]
- Xue, F.; Zhao, X.; Li, C.; Adhikari, B. Modification of Plum Seed Protein Isolate via Enzymatic Hydrolysis, Polyphenol Conjugation and Polysaccharide Complexation to Enhance Emulsification and Encapsulation of Essential Oils. Int. J. Biol. Macromol. 2025, 306, 141812. [Google Scholar] [CrossRef]
- Cao, T.; Wei, Z.; Xue, C. Recent Advances in Nutraceutical Delivery Systems Constructed by Protein–Polysaccharide Complexes: A Systematic Review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70115. [Google Scholar] [CrossRef]
- Boonmahitthisud, A.; Wongjampee, T.; Tanpichai, S. pH-Responsive Cross-Linked Chitin Nanofiber-Reinforced Chitosan Films with Red Cabbage Anthocyanins for Intelligent Food Packaging: Properties, Freshness Monitoring, and Stability. Carbohydr. Polym. 2025, 356, 123373. [Google Scholar] [CrossRef] [PubMed]
- Günal-Köroğlu, D.; Karabulut, G.; Catalkaya, G.; Capanoglu, E. The Effect of Polyphenol-Loaded Electrospun Fibers in Food Systems. Food Bioprocess Technol. 2025, 1–23. [Google Scholar] [CrossRef]
- Kharat, M.; Skrzynski, M.; Decker, E.A.; McClements, D.J. Enhancement of Chemical Stability of Curcumin-Enriched Oil-in-Water Emulsions: Impact of Antioxidant Type and Concentration. Food Chem. 2020, 320, 126653. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Antioxidant and Antimicrobial Poly(Vinyl Alcohol)-Based Films Incorporated with Grapefruit Seed Extract and Curcumin. J. Environ. Chem. Eng. 2021, 9, 104694. [Google Scholar] [CrossRef]
- Aliabbasi, N.; Fathi, M.; Emam-Djomeh, Z. Curcumin: A Promising Bioactive Agent for Application in Food Packaging Systems. J. Environ. Chem. Eng. 2021, 9, 105520. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Wang, P.; Guo, M.; Jiang, S.; Li, X.; Jiang, S. Films Based on κ-Carrageenan Incorporated with Curcumin for Freshness Monitoring. Food Hydrocoll. 2018, 83, 134–142. [Google Scholar] [CrossRef]
- Abelti, A.L.; Teka, T.A.; Fikreyesus Forsido, S.; Tamiru, M.; Bultosa, G.; Alkhtib, A.; Burton, E. Bio-Based Smart Materials for Fish Product Packaging: A Review. Int. J. Food Prop. 2022, 25, 857–871. [Google Scholar] [CrossRef]
- Zhou, S.; Li, N.; Peng, H.; Yang, X.; Lin, D. The Development of Highly pH-Sensitive Bacterial Cellulose Nanofibers/Gelatin-Based Intelligent Films Loaded with Anthocyanin/Curcumin for the Fresh-Keeping and Freshness Detection of Fresh Pork. Foods 2023, 12, 3719. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, J.T.; Kim, M.H.; Park, W.H. Biodegradable Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate)/Curcumin Composite Film as a Smart Indicator of Food Spoilage. Sens. Actuators B Chem. 2024, 408, 135511. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.; Egea, M.B. Edible Bioactive Film with Curcumin: A Potential “Functional” Packaging? Int. J. Mol. Sci. 2022, 23, 5638. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Ezati, P.; Rhim, J.-W. Curcumin and Its Uses in Active and Smart Food Packaging Applications—A Comprehensive Review. Food Chem. 2022, 375, 131885. [Google Scholar] [CrossRef] [PubMed]
- Tambawala, H.; Batra, S.; Shirapure, Y.; More, A.P. Curcumin- A Bio-Based Precursor for Smart and Active Food Packaging Systems: A Review. J. Polym. Environ. 2022, 30, 2177–2208. [Google Scholar] [CrossRef]
- Shen, R.; Lin, D.; Liu, Z.; Zhai, H.; Yang, X. Fabrication of Bacterial Cellulose Nanofibers/Soy Protein Isolate Colloidal Particles for the Stabilization of High Internal Phase Pickering Emulsions by Anti-Solvent Precipitation and Their Application in the Delivery of Curcumin. Front. Nutr. 2021, 8, 734620. [Google Scholar] [CrossRef]
- Dos Santos Lima, K.T.; Bergamo, V.N.; Leandro, G.C.; De Matos Fonseca, J.; Monteiro, A.R.; Valencia, G.A. Active Films Based on Gelatin and Modified Curcumin: Physicochemical Properties and Food Packaging Application. Polym. Adv. Technol. 2025, 36, e70123. [Google Scholar] [CrossRef]
- Cao, H.-M.; Zhao, P.-H.; Zhao, Y.-T.; Fang, J.-J.; Wang, Y.-N.; Chen, X. Recent Progress in Curcumin: Extraction, Purification, and Bioactivity. Curr. Med. Chem. 2025, 32. [Google Scholar] [CrossRef]
- Ali, A.; Mendez, T.; Anees, K.; Prasath, D. Advances in Curcuminoids Extraction, Stability, and Bioaccessibility from Foods: A Brief Review. Food Meas. 2024, 18, 4832–4844. [Google Scholar] [CrossRef]
- Khor, P.Y.; Mohd Aluwi, M.F.F.; Rullah, K.; Lam, K.W. Insights on the Synthesis of Asymmetric Curcumin Derivatives and Their Biological Activities. Eur. J. Med. Chem. 2019, 183, 111704. [Google Scholar] [CrossRef]
- Masih, R.; Iqbal, M.S. Thermal Degradation Kinetics and Pyrolysis GC–MS Study of Curcumin. Food Chem. 2022, 385, 132638. [Google Scholar] [CrossRef]
- Pardeshi, S.; Mohite, P.; Rajput, T.; Puri, A. The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview. Curr. Cancer Drug Targets 2024, 21, e260723219113. [Google Scholar] [CrossRef]
- Purwaningsih, H.; Yupa, N.P.; Kemala, T.; Kustiariyah, K.; Widiastuti, D. Intelligent Food Packaging from Ganyong Starch (Canna Edulis Kerr.) Modified with Nanocellulose from Corn Husk (Zea mays) and Curcumin as Bioindicator. Pure Appl. Chem. 2025. [Google Scholar] [CrossRef]
- Gordon, O.N.; Luis, P.B.; Sintim, H.O.; Schneider, C. Unraveling Curcumin Degradation. J. Biol. Chem. 2015, 290, 4817–4828. [Google Scholar] [CrossRef] [PubMed]
- Sanidad, K.Z.; Zhu, J.; Wang, W.; Du, Z.; Zhang, G. Effects of Stable Degradation Products of Curcumin on Cancer Cell Proliferation and Inflammation. J. Agric. Food Chem. 2016, 64, 9189–9195. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of Curcumin: From Mechanism to Biological Implications. J. Agric. Food Chem. 2015, 63, 7606–7614. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Rohani, S.; Gillies, E.R. Curcumin, a Promising Anti-Cancer Therapeutic: A Review of Its Chemical Properties, Bioactivity and Approaches to Cancer Cell Delivery. RSC Adv. 2014, 4, 10815. [Google Scholar] [CrossRef]
- Mashayekhi-Sardoo, H.; Mashayekhi-Sardoo, A.; Roufogalis, B.D.; Jamialahmadi, T.; Sahebkar, A. Impact of Curcumin on Microsomal Enzyme Activities: Drug Interaction and Chemopreventive Studies. Curr. Med. Chem. 2021, 28, 7122–7140. [Google Scholar] [CrossRef]
- Kumar, H.; Dhalaria, R.; Kimta, N.; Guleria, S.; Upadhyay, N.K.; Nepovimova, E.; Dhanjal, D.S.; Sethi, N.; Manickam, S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother. Res. 2025, 39, 1494–1530. [Google Scholar] [CrossRef]
- Wahyuni, L.S.; Nuryono, N.; Hatmanto, A.D. Optimizing Banana Preservation with Bandgap-Dependent Curcumin-Modified Cu-Doped-ZnO Nanoparticles in Chitosan Edible Coatings. Surf. Interfaces 2025, 61, 106104. [Google Scholar] [CrossRef]
- Rai, M.; Feitosa, C.M.; Ingle, A.P.; Golinska, P. Harnessing Bioactive Nanocurcumin and Curcumin Nanocomposites to Combat Microbial Pathogens: A Comprehensive Review. Crit. Rev. Biotechnol. 2025, 1–23. [Google Scholar] [CrossRef]
- Bertoncini-Silva, C.; Vlad, A.; Ricciarelli, R.; Giacomo Fassini, P.; Suen, V.M.M.; Zingg, J.-M. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants 2024, 13, 331. [Google Scholar] [CrossRef]
- Taghinia, P.; Abdolshahi, A.; Sedaghati, S.; Shokrollahi, B. Smart Edible Films Based on Mucilage of Lallemantia Iberica Seed Incorporated with Curcumin for Freshness Monitoring. Food Sci. Nutr. 2021, 9, 1222–1231. [Google Scholar] [CrossRef]
- Beganovic, S.; Wittmann, C. Medical Properties, Market Potential, and Microbial Production of Golden Polyketide Curcumin for Food, Biomedical, and Cosmetic Applications. Curr. Opin. Biotechnol. 2024, 87, 103112. [Google Scholar] [CrossRef] [PubMed]
- Racz, L.Z.; Racz, C.P.; Pop, L.-C.; Tomoaia, G.; Mocanu, A.; Barbu, I.; Sárközi, M.; Roman, I.; Avram, A.; Tomoaia-Cotisel, M.; et al. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022, 27, 6854. [Google Scholar] [CrossRef]
- Han, Y.; Fu, S.; Yang, X.; Wang, X.; Zhao, H.; Yang, X. Recent Nanotechnology Improvements in Curcumin Bioavailability and Related Applications. Food Biosci. 2024, 61, 104660. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Ping, Q.; Sui, Z.; Song, M. Green Crosslinked Gelatin Films Loaded with Curcumin: A Promising Eco-Friendly Alternative for Food Packaging. Prog. Org. Coat. 2025, 200, 109054. [Google Scholar] [CrossRef]
- Mali, S.N.; Pandey, A. Development of Curcumin Integrated Smart pH Indicator, Antibacterial, and Antioxidant Waste Derived Artocarpus Lakoocha Starch-Based Packaging Film. Int. J. Biol. Macromol. 2024, 275, 133827. [Google Scholar] [CrossRef]
- Luo, L.; Su, W.; Hassan, M.F.; Cai, W.; Wang, M.; Zhang, L.; Sun, J.; Huang, L.; Wang, J. Photothermal Functionalized Antibacterial Packaging Film with Controllable Release Capability for Fruit Preservation. Food Res. Int. 2025, 206, 116079. [Google Scholar] [CrossRef]
- Said, N.S.; Lee, W.Y. Pectin-Based Active and Smart Film Packaging: A Comprehensive Review of Recent Advancements in Antimicrobial, Antioxidant, and Smart Colorimetric Systems for Enhanced Food Preservation. Molecules 2025, 30, 1144. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.D.; Bertolo, M.R.V.; Rodrigues, M.Á.V.; Marangon, C.A.; Silva, G.D.C.; Odoni, F.C.A.; Egea, M.B. Curcumin: A Multifunctional Molecule for the Development of Smart and Active Biodegradable Polymer-Based Films. Trends Food Sci. Technol. 2021, 118, 840–849. [Google Scholar] [CrossRef]
- Li, N.; Yang, X.; Lin, D. Development of Bacterial Cellulose Nanofibers/Konjac Glucomannan-Based Intelligent Films Loaded with Curcumin for the Fresh-Keeping and Freshness Monitoring of Fresh Beef. Food Packag. Shelf Life 2022, 34, 100989. [Google Scholar] [CrossRef]
- Xie, Y.; Niu, X.; Yang, J.; Fan, R.; Shi, J.; Ullah, N.; Feng, X.; Chen, L. Active Biodegradable Films Based on the Whole Potato Peel Incorporated with Bacterial Cellulose and Curcumin. Int. J. Biol. Macromol. 2020, 150, 480–491. [Google Scholar] [CrossRef]
- Ma, Q.; Ren, Y.; Wang, L. Investigation of Antioxidant Activity and Release Kinetics of Curcumin from Tara Gum/Polyvinyl Alcohol Active Film. Food Hydrocoll. 2017, 70, 286–292. [Google Scholar] [CrossRef]
- Stanley, J.; John, A.; Pušnik Črešnar, K.; Fras Zemljič, L.; Lambropoulou, D.A.; Bikiaris, D.N. Active Agents Incorporated in Polymeric Substrates to Enhance Antibacterial and Antioxidant Properties in Food Packaging Applications. Macromol 2022, 3, 1–27. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, H.; Julian McClements, D.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent Advances in Intelligent Food Packaging Materials: Principles, Preparation and Applications. Food Chem. 2022, 375, 131738. [Google Scholar] [CrossRef]
- Xie, Q.; Zheng, X.; Li, L.; Ma, L.; Zhao, Q.; Chang, S.; You, L. Effect of Curcumin Addition on the Properties of Biodegradable Pectin/Chitosan Films. Molecules 2021, 26, 2152. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Chen, Y.; Ding, H.; Wu, H.; Gao, Y.; Huang, S.; Wu, H.; Kong, D.; Yang, Z.; et al. Active and Smart Biomass Film Containing Cinnamon Oil and Curcumin for Meat Preservation and Freshness Indicator. Food Hydrocoll. 2022, 133, 107979. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Curcumin Incorporated Poly(Butylene Adipate-Co-Terephthalate) Film with Improved Water Vapor Barrier and Antioxidant Properties. Materials 2020, 13, 4369. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Tan, S.; Tan, G.; Zhang, H.; Xia, N.; Jiang, L.; Ren, H.; Rayan, A.M. Intelligent Colorimetric Soy Protein Isolate-Based Films Incorporated with Curcumin through an Organic Solvent-Free pH-Driven Method: Properties, Molecular Interactions, and Application. Food Hydrocoll. 2022, 133, 107904. [Google Scholar] [CrossRef]
- Li, N.; Zhou, S.; Yang, X.; Lin, D. Applications of Natural Polysaccharide-Based pH-Sensitive Films in Food Packaging: Current Research and Future Trends. Innov. Food Sci. Emerg. Technol. 2022, 82, 103200. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Lencova, S.; Zdenkova, K.; Demnerova, K.; Stiborova, H. Short Communication: Antibacterial and Antibiofilm Effect of Natural Substances and Their Mixtures over Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. LWT 2022, 154, 112777. [Google Scholar] [CrossRef]
- Lencova, S.; Svarcova, V.; Stiborova, H.; Demnerova, K.; Jencova, V.; Hozdova, K.; Zdenkova, K. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Appl. Mater. Interfaces 2021, 13, 2277–2288. [Google Scholar] [CrossRef]
- Kaur, S.; Modi, N.H.; Panda, D.; Roy, N. Probing the Binding Site of Curcumin in Escherichia coli and Bacillus subtilis FtsZ—A Structural Insight to Unveil Antibacterial Activity of Curcumin. Eur. J. Med. Chem. 2010, 45, 4209–4214. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Preparation of Antimicrobial and Antioxidant Gelatin/Curcumin Composite Films for Active Food Packaging Application. Colloids Surf. B Biointerfaces 2020, 188, 110761. [Google Scholar] [CrossRef]
- Pandit, R.S.; Gaikwad, S.C.; Agarkar, G.A.; Gade, A.K.; Rai, M. Curcumin Nanoparticles: Physico-Chemical Fabrication and Its in Vitro Efficacy against Human Pathogens. 3 Biotech 2015, 5, 991–997. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, S.; Zheng, X.; Luo, Z.; Chen, H.; Yao, X. Advances in β-Diketocyclisation of Curcumin Derivatives and Their Antitumor Activity. Chem. Biodivers. 2024, 21, e202301556. [Google Scholar] [CrossRef]
- Liu, D.; Dang, S.; Zhang, L.; Munsop, K.; Li, X. Corn Starch/Polyvinyl Alcohol Based Films Incorporated with Curcumin-Loaded Pickering Emulsion for Application in Intelligent Packaging. Int. J. Biol. Macromol. 2021, 188, 974–982. [Google Scholar] [CrossRef]
- Li, S.; Wei, N.; Wei, J.; Fang, C.; Feng, T.; Liu, F.; Liu, X.; Wu, B. Curcumin and Silver Nanoparticles Loaded Antibacterial Multifunctional Pectin/Gelatin Films for Food Packaging Applications. Int. J. Biol. Macromol. 2024, 266, 131248. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Bhandari, B.; Yang, C. Novel pH-Sensitive Films Containing Curcumin and Anthocyanins to Monitor Fish Freshness. Food Hydrocoll. 2020, 100, 105438. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W. pH-Responsive Pectin-Based Multifunctional Films Incorporated with Curcumin and Sulfur Nanoparticles. Carbohydr. Polym. 2020, 230, 115638. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Hou, Y.; Jia, S.; Cheng, S.; Su, W.; Tan, M.; Zhu, B.; Wang, H. Preparation and Characterization of a pH-Responsive Smart Film Based on Soy Lipophilic Protein/Hydroxypropyl Methylcellulose for Salmon Freshness Monitoring and Packaging. Food Packag. Shelf Life 2025, 47, 101436. [Google Scholar] [CrossRef]
- Yildiz, E.; Sumnu, G.; Kahyaoglu, L.N. Monitoring Freshness of Chicken Breast by Using Natural Halochromic Curcumin Loaded Chitosan/PEO Nanofibers as an Intelligent Package. Int. J. Biol. Macromol. 2021, 170, 437–446. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, X.; Zhang, J.; Yang, Z.; Sun, Y.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Povey, M.; et al. Extruded Low Density Polyethylene-Curcumin Film: A Hydrophobic Ammonia Sensor for Intelligent Food Packaging. Food Packag. Shelf Life 2020, 26, 100595. [Google Scholar] [CrossRef]
- Luo, N.; Varaprasad, K.; Reddy, G.V.S.; Rajulu, A.V.; Zhang, J. Preparation and Characterization of Cellulose/Curcumin Composite Films. RSC Adv. 2012, 2, 8483. [Google Scholar] [CrossRef]
- Kittitheeranun, P.; Sanchavanakit, N.; Sajomsang, W.; Dubas, S.T. Loading of Curcumin in Polyelectrolyte Multilayers. Langmuir 2010, 26, 6869–6873. [Google Scholar] [CrossRef]
- Nieto-Suaza, L.; Acevedo-Guevara, L.; Sánchez, L.T.; Pinzón, M.I.; Villa, C.C. Characterization of Aloe Vera-Banana Starch Composite Films Reinforced with Curcumin-Loaded Starch Nanoparticles. Food Struct. 2019, 22, 100131. [Google Scholar] [CrossRef]
- Heger, M.; Van Golen, R.F.; Broekgaarden, M.; Michel, M.C. The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer. Pharmacol. Rev. 2014, 66, 222–307. [Google Scholar] [CrossRef]
- Zhu, J.; Sanidad, K.Z.; Sukamtoh, E.; Zhang, G. Potential Roles of Chemical Degradation in the Biological Activities of Curcumin. Food Funct. 2017, 8, 907–914. [Google Scholar] [CrossRef]
- Tayebi-Khorrami, V.; Shahgordi, S.; Dabbaghi, M.M.; Fadaei, M.S.; Masoumi Shahrbabak, S.; Fallahianshafiei, S.; Fadaei, M.R.; Hasnain, M.S.; Nayak, A.K.; Askari, V.R. From Nature to Nanotech: Harnessing the Power of Electrospun Polysaccharide-Based Nanofibers as Sustainable Packaging. Int. J. Biol. Macromol. 2025, 299, 140127. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Guo, M.; Jin, T.Z.; Arabi, S.A.; He, Q.; Ismail, B.B.; Hu, Y.; Liu, D. Antimicrobial and UV Blocking Properties of Composite Chitosan Films with Curcumin Grafted Cellulose Nanofiber. Food Hydrocoll. 2021, 112, 106337. [Google Scholar] [CrossRef]
- Awlqadr, F.H.; Majeed, K.R.; Altemimi, A.B.; Hassan, A.M.; Qadir, S.A.; Saeed, M.N.; Faraj, A.M.; Salih, T.H.; Abd Al-Manhel, A.J.; Najm, M.A.A.; et al. Nanotechnology-Based Herbal Medicine: Preparation, Synthesis, and Applications in Food and Medicine. J. Agric. Food Res. 2025, 19, 101661. [Google Scholar] [CrossRef]
- Wang, H.; Hao, L.; Wang, P.; Chen, M.; Jiang, S.; Jiang, S. Release Kinetics and Antibacterial Activity of Curcumin Loaded Zein Fibers. Food Hydrocoll. 2017, 63, 437–446. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Liu, Y.; Zhang, J.; Hossen, M.A.; Sameen, D.E.; Dai, J.; Li, S.; Qin, W. Fabrication and Characterization of pH-Responsive Intelligent Films Based on Carboxymethyl Cellulose and Gelatin/Curcumin/Chitosan Hybrid Microcapsules for Pork Quality Monitoring. Food Hydrocoll. 2022, 124, 107224. [Google Scholar] [CrossRef]
- Aydogdu, A.; Radke, C.J.; Bezci, S.; Kirtil, E. Characterization of Curcumin Incorporated Guar Gum/Orange Oil Antimicrobial Emulsion Films. Int. J. Biol. Macromol. 2020, 148, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Ferrari, G. Essential Oil Nanoemulsions as Antimicrobial Agents in Food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef]
- Schoener, A.L.; Zhang, R.; Lv, S.; Weiss, J.; McClements, D.J. Fabrication of Plant-Based Vitamin D3 -Fortified Nanoemulsions: Influence of Carrier Oil Type on Vitamin Bioaccessibility. Food Funct. 2019, 10, 1826–1835. [Google Scholar] [CrossRef]
- Sanchez, L.T.; Pinzon, M.I.; Villa, C.C. Development of Active Edible Films Made from Banana Starch and Curcumin-Loaded Nanoemulsions. Food Chem. 2022, 371, 131121. [Google Scholar] [CrossRef]
- Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S.M. Application of Curcumin-Loaded Nanocarriers for Food, Drug and Cosmetic Purposes. Trends Food Sci. Technol. 2019, 88, 445–458. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Kang, S.; Cui, M.; Xu, H. Development of pH-Responsive Antioxidant Soy Protein Isolate Films Incorporated with Cellulose Nanocrystals and Curcumin Nanocapsules to Monitor Shrimp Freshness. Food Hydrocoll. 2021, 120, 106893. [Google Scholar] [CrossRef]
- Xu, D.; Liu, M.; Zou, H.; Tian, J.; Huang, H.; Wan, Q.; Dai, Y.; Wen, Y.; Zhang, X.; Wei, Y. A New Strategy for Fabrication of Water Dispersible and Biodegradable Fluorescent Organic Nanoparticles with AIE and ESIPT Characteristics and Their Utilization for Bioimaging. Talanta 2017, 174, 803–808. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.; Deng, Y.; Chu, Y.; Zhong, Y.; Wang, G.; Xiong, Y.; Liu, X.; Chen, L.; Li, H. Curcumin-Based Waterborne Polyurethane-Gelatin Composite Bioactive Films for Effective UV Shielding and Inhibition of Oil Oxidation. Food Control 2022, 141, 109199. [Google Scholar] [CrossRef]
- Chen, W.; Liu, D.; Zhou, L.; Li, Q.; Wu, D. Antioxidant Activity of Vitamin E Enhanced by Cyclodextrin Inclusion Complex. Br. Food J. 2021, 123, 3988–3998. [Google Scholar] [CrossRef]
- Arya, P.; Raghav, N. In-Vitro Studies of Curcumin-β-Cyclodextrin Inclusion Complex as Sustained Release System. J. Mol. Struct. 2021, 1228, 129774. [Google Scholar] [CrossRef]
- Xu, H.; Ma, Q.; Qiu, C.; Wang, J.; Jin, Z.; Hu, Y. Encapsulation and Controlled Delivery of Curcumin by Self-Assembled Cyclodextrin Succinate/Chitosan Nanoparticles. Food Hydrocoll. 2024, 157, 110465. [Google Scholar] [CrossRef]
- Hedi, W.; Jingbo, L.; Yiding, Y.; Yuxi, S.; Jiyun, L.; Qinqin, D.; Yan, C.; Boqun, L.; Ting, Z. γ-Cyclodextrin-BSA for Nano-Encapsulation of Hydrophobic Substance. Food Biosci. 2021, 41, 101009. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, K.; Lian, G.; Zhou, M.; Lu, C.; Jin, G. Bioactivity and Cell Imaging of Antitumor Fluorescent Agents (Curcumin Derivatives) Coated by Two-Way Embedded Cyclodextrin Strategy. Chem. Biodivers. 2022, 19, e202200644. [Google Scholar] [CrossRef]
- Lan, Q.; Mao, X.; Xia, C.; Zhang, D.; Huang, P.; Zhang, W.; Shi, S.; Wang, Z. Curcumin Based Polyurethane Materials and Their Functional Applications: A Review. Mater. Res. Express 2024, 11, 052001. [Google Scholar] [CrossRef]
- Almasi, H.; Forghani, S.; Moradi, M. Recent Advances on Intelligent Food Freshness Indicators; an Update on Natural Colorants and Methods of Preparation. Food Packag. Shelf Life 2022, 32, 100839. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Ranjeth Kumar Reddy, T.; Kim, H.-J. Mechanical, Optical, Thermal, and Barrier Properties of Poly (Lactic Acid)/Curcumin Composite Films Prepared Using Twin-Screw Extruder. Food Biophys. 2019, 14, 22–29. [Google Scholar] [CrossRef]
- Subbuvel, M.; Kavan, P. Development and Investigation of Antibacterial and Antioxidant Characteristics of Poly Lactic Acid Films Blended with Neem Oil and Curcumin. J. Appl. Polym. Sci. 2022, 139, 51891. [Google Scholar] [CrossRef]
- Luo, X.; Lim, L.-T. Curcumin-Loaded Electrospun Nonwoven as a Colorimetric Indicator for Volatile Amines. LWT 2020, 128, 109493. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, Q.-Y.; Lou, C.-W.; Lin, J.-H.; Li, T.-T. Recent Advances on pH-Responsive Polymers Integrated with Nature Colorants: From Preparation to Applications. Text. Res. J. 2024, 94, 2316–2329. [Google Scholar] [CrossRef]
- Gomaa, M.; Hifney, A.F.; Fawzy, M.A.; Abdel-Gawad, K.M. Use of Seaweed and Filamentous Fungus Derived Polysaccharides in the Development of Alginate-Chitosan Edible Films Containing Fucoidan: Study of Moisture Sorption, Polyphenol Release and Antioxidant Properties. Food Hydrocoll. 2018, 82, 239–247. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Jiang, X.; Wu, J.; Le, X. Molecular Interactions, Characterization and Antimicrobial Activity of Curcumin–Chitosan Blend Films. Food Hydrocoll. 2016, 52, 564–572. [Google Scholar] [CrossRef]
- Sanitá, P.V.; Pavarina, A.C.; Dovigo, L.N.; Ribeiro, A.P.D.; Andrade, M.C.; Mima, E.G.D.O. Curcumin-Mediated Anti-Microbial Photodynamic Therapy against Candida Dubliniensis Biofilms. Lasers Med. Sci. 2018, 33, 709–717. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.; Huang, Y.; Leng, X. Incorporating Functional Colorants in Whey Protein Isolate–Cellulose Nanocrystal-Blended Edible Films for Pork Freshness Prediction. Int. J. Biol. Macromol. 2024, 283, 137276. [Google Scholar] [CrossRef]
- Marappan, G.; Tahir, H.E.; Karim, N.; Lakshmanan, A.; Shishir, M.R.I.; Hashim, S.B.H.; K.M Khogly, A.; Khan, S.; Huang, X.; Sivalingam, Y.; et al. Natural Pigment-Based pH/Gas-Sensitive Intelligent Packaging Film for Freshness Monitoring of Meat and Seafood: Influencing Factors, Technological Advances, and Future Perspectives. Food Rev. Int. 2025, 1–38. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Erim, F.B. Antimicrobial and Physical Properties of Chitosan Films Incorporated with Turmeric Extract. Int. J. Biol. Macromol. 2017, 101, 882–888. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Smart Edible Films Based on Gelatin and Curcumin. Food Hydrocoll. 2017, 66, 8–15. [Google Scholar] [CrossRef]
- Baek, S.; Song, K.B. Characterization of Active Biodegradable Films Based on Proso Millet Starch and Curcumin. Starch Stärke 2019, 71, 1800174. [Google Scholar] [CrossRef]
- Taghavi Kevij, H.; Salami, M.; Mohammadian, M.; Khodadadi, M. Fabrication and Investigation of Physicochemical, Food Simulant Release, and Antioxidant Properties of Whey Protein Isolate-Based Films Activated by Loading with Curcumin through the pH-Driven Method. Food Hydrocoll. 2020, 108, 106026. [Google Scholar] [CrossRef]
- Fathi, M.; Rostami, H.; Youseftabar Miri, N.; Samadi, M.; Delkhosh, M. Development of an Intelligent Packaging by Incorporating Curcumin into Pistachio Green Hull Pectin/Poly Vinyl Alcohol (PVA) Films. Food Meas. 2022, 16, 2468–2477. [Google Scholar] [CrossRef]
- De Campos, S.S.; De Oliveira, A.; Moreira, T.F.M.; Da Silva, T.B.V.; Da Silva, M.V.; Pinto, J.A.; Bilck, A.P.; Gonçalves, O.H.; Fernandes, I.P.; Barreiro, M.-F.; et al. TPCS/PBAT Blown Extruded Films Added with Curcumin as a Technological Approach for Active Packaging Materials. Food Packag. Shelf Life 2019, 22, 100424. [Google Scholar] [CrossRef]
- Khan, M.R.; Sadiq, M.B.; Mehmood, Z. Development of Edible Gelatin Composite Films Enriched with Polyphenol Loaded Nanoemulsions as Chicken Meat Packaging Material. Cyta J. Food 2020, 18, 137–146. [Google Scholar] [CrossRef]
- Wang, L.; Mu, R.-J.; Li, Y.; Lin, L.; Lin, Z.; Pang, J. Characterization and Antibacterial Activity Evaluation of Curcumin Loaded Konjac Glucomannan and Zein Nanofibril Films. LWT 2019, 113, 108293. [Google Scholar] [CrossRef]
- Umaraw, P.; Verma, A.K. Comprehensive Review on Application of Edible Film on Meat and Meat Products: An Eco-Friendly Approach. Crit. Rev. Food Sci. Nutr. 2017, 57, 1270–1279. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active Packaging Films with Natural Antioxidants to Be Used in Meat Industry: A Review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Hosseini, F.; Fathi, M.; Soleimanian-Zad, S.; Soltanizadeh, N. Bioactive Aerogels as Absorbent Pads: Production, Characterization, and Application for Chicken Meat Packaging. Food Bioprocess Technol. 2025, 1–18. [Google Scholar] [CrossRef]
- Dudnyk, I.; Janeček, E.-R.; Vaucher-Joset, J.; Stellacci, F. Edible Sensors for Meat and Seafood Freshness. Sens. Actuators B Chem. 2018, 259, 1108–1112. [Google Scholar] [CrossRef]
- GB 2707-2016; China’s National Standard for Food Safety Fresh (Frozen) Livestock and Poultry Products. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Huda, K.U.; Ahmad, A.; Mushtaq, Z.; Raza, M.A.; Moreno, A.; Saeed, F.; Afzaal, M. Development of Ultrasonic-Assisted Gelatin-Based Biodegradable Packaging Film Incorporated with Turmeric Extract for the Shelf-Life Extension of Chicken Minced Meat. Int. J. Biol. Macromol. 2025, 306, 141558. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, X.; Xie, F.; Fan, Y.; Xu, X.; Qi, J.; Xiong, G.; Gao, X.; Zhang, F. pH-Responsive Double-Layer Indicator Films Based on Konjac Glucomannan/Camellia Oil and Carrageenan/Anthocyanin/Curcumin for Monitoring Meat Freshness. Food Hydrocoll. 2021, 118, 106695. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Almasi, H.; Moradi, M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric pH Indicator for Freshness/Spoilage Monitoring of Shrimp. Food Control 2020, 113, 107169. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an Intelligent pH Film Based on Biodegradable Polymers and Roselle Anthocyanins for Monitoring Pork Freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef]
- GB 2733-2015; Food Safety Fresh and Frozen Animal Seafood Products. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2015.
- Vadivel, M.; Sankarganesh, M.; Raja, J.D.; Rajesh, J.; Mohanasundaram, D.; Alagar, M. Bioactive Constituents and Bio-Waste Derived Chitosan/Xylan Based Biodegradable Hybrid Nanocomposite for Sensitive Detection of Fish Freshness. Food Packag. Shelf Life 2019, 22, 100384. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef]
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N.; Viñas, I. Application of Modified Atmosphere Packaging as a Safety Approach to Fresh-Cut Fruits and Vegetables—A Review. Trends Food Sci. Technol. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- Wei, H.; Seidi, F.; Zhang, T.; Jin, Y.; Xiao, H. Ethylene Scavengers for the Preservation of Fruits and Vegetables: A Review. Food Chem. 2021, 337, 127750. [Google Scholar] [CrossRef]
- Jung, S.; Cui, Y.; Barnes, M.; Satam, C.; Zhang, S.; Chowdhury, R.A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S.M.; et al. Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits. Adv. Mater. 2020, 32, 1908291. [Google Scholar] [CrossRef]
- Liang, Y.; Yao, Y.; Liu, Y.; Li, Y.; Xu, C.; Fu, L.; Lin, B. Curcumin-Loaded HKUST-1@ Carboxymethyl Starch-Based Composites with Moisture-Responsive Release Properties and Synergistic Antibacterial Effect for Perishable Fruits. Int. J. Biol. Macromol. 2022, 214, 181–191. [Google Scholar] [CrossRef]
- Joshy, K.S.; Augustine, R.; Li, T.; Snigdha, S.; Hasan, A.; Komalan, C.; Kalarikkal, N.; Thomas, S. Carboxymethylcellulose Hybrid Nanodispersions for Edible Coatings with Potential Anti-Cancer Properties. Int. J. Biol. Macromol. 2020, 157, 350–358. [Google Scholar] [CrossRef]
- Ghosh, T.; Nakano, K.; Mulchandani, N.; Katiyar, V. Curcumin Loaded Iron Functionalized Biopolymeric Nanofibre Reinforced Edible Nanocoatings for Improved Shelf Life of Cut Pineapples. Food Packag. Shelf Life 2021, 28, 100658. [Google Scholar] [CrossRef]
- Wu, J.; Sun, X.; Guo, X.; Ji, M.; Wang, J.; Cheng, C.; Chen, L.; Wen, C.; Zhang, Q. Physicochemical, Antioxidant, In Vitro Release, and Heat Sealing Properties of Fish Gelatin Films Incorporated with β-Cyclodextrin/Curcumin Complexes for Apple Juice Preservation. Food Bioprocess Technol. 2018, 11, 447–461. [Google Scholar] [CrossRef]
- Mohammadi, A.; Jafari, S.M.; Esfanjani, A.F.; Akhavan, S. Application of Nano-Encapsulated Olive Leaf Extract in Controlling the Oxidative Stability of Soybean Oil. Food Chem. 2016, 190, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lei, Y.; Zhu, R.; Zhao, M.; Lu, J.; Xiao, D.; Jiao, C.; Zhang, Z.; Shen, G.; Li, S. Preparation and Characterization of Bioactive Edible Packaging Films Based on Pomelo Peel Flours Incorporating Tea Polyphenol. Food Hydrocoll. 2019, 90, 41–49. [Google Scholar] [CrossRef]
- Demircan, B.; McClements, D.J.; Velioglu, Y.S. Next-Generation Edible Packaging: Development of Water-Soluble, Oil-Resistant, and Antioxidant-Loaded Pouches for Use in Noodle Sauces. Foods 2025, 14, 1061. [Google Scholar] [CrossRef]
- Begley, T.; Castle, L.; Feigenbaum, A.; Franz, R.; Hinrichs, K.; Lickly, T.; Mercea, P.; Milana, M.; O’Brien, A.; Rebre, S.; et al. Evaluation of Migration Models That Might Be Used in Support of Regulations for Food-Contact Plastics. Food Addit. Contam. 2005, 22, 73–90. [Google Scholar] [CrossRef]
- Tawakkal, I.S.M.A.; Cran, M.J.; Bigger, S.W. Release of Thymol from Poly(Lactic Acid)-Based Antimicrobial Films Containing Kenaf Fibres as Natural Filler. LWT Food Sci. Technol. 2016, 66, 629–637. [Google Scholar] [CrossRef]
- Mondal, K.; Soundararajan, N.; Goud, V.V.; Katiyar, V. Cellulose Nanocrystals Modulate Curcumin Migration in PLA-Based Active Films and Its Application as Secondary Packaging. ACS Sustain. Chem. Eng. 2024, 12, 9642–9657. [Google Scholar] [CrossRef]
- Redfearn, H.N.; Warren, M.K.; Goddard, J.M. Reactive Extrusion of Nonmigratory Active and Intelligent Packaging. ACS Appl. Mater. Interfaces 2023, 15, 29511–29524. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Wan Mustapha, W.A.; Zhang, X. Ultrasound-Assisted Alkaline Hydrolysis of Fish (Cyprinus carpio L.) Scale Gelatin: A Possible Curcumin Delivery System with Increased Water Solubility and Sustained Release. LWT 2024, 191, 115589. [Google Scholar] [CrossRef]
- Chelimela, N.; Alavala, R.R.; Satla, S.R. Curcumin—Bioavailability Enhancement by Prodrug Approach and Novel Formulations. Chem. Biodivers. 2024, 21, e202302030. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.; Sharath, K.P.; Midhun Dominic, C.D.; Radhakrishnan, E.K. Microbial Load Reduction in Stored Raw Beef Meat Using Chitosan/Starch-Based Active Packaging Films Incorporated with Cellulose Nanofibers and Cinnamon Essential Oil. Meat Sci. 2024, 216, 109552. [Google Scholar] [CrossRef]
- Zhao, K.; Hao, Y.; Guo, X.; Chang, Y.; Shen, X. Development and Characterization of Quinoa Protein-Fucoidan Emulsion Gels with Excellent Rheological Properties for 3D Printing and Curcumin Encapsulation Stability. Food Chem. 2025, 471, 142819. [Google Scholar] [CrossRef] [PubMed]
- Subbuvel, M.; Kavan, P. Preparation and Characterization of Polylactic Acid/Fenugreek Essential Oil/Curcumin Composite Films for Food Packaging Applications. Int. J. Biol. Macromol. 2022, 194, 470–483. [Google Scholar] [CrossRef]
- Targhi, A.A.; Moammeri, A.; Jamshidifar, E.; Abbaspour, K.; Sadeghi, S.; Lamakani, L.; Akbarzadeh, I. Synergistic Effect of Curcumin-Cu and Curcumin-Ag Nanoparticle Loaded Niosome: Enhanced Antibacterial and Anti-Biofilm Activities. Bioorganic Chem. 2021, 115, 105116. [Google Scholar] [CrossRef]
- Qu, B.; Xiao, Z.; Luo, Y. Sustainable Nanotechnology for Food Preservation: Synthesis, Mechanisms, and Applications of Zinc Oxide Nanoparticles. J. Agric. Food Res. 2025, 19, 101743. [Google Scholar] [CrossRef]
- Duan, M.; Yu, S.; Sun, J.; Jiang, H.; Zhao, J.; Tong, C.; Hu, Y.; Pang, J.; Wu, C. Development and Characterization of Electrospun Nanofibers Based on Pullulan/Chitin Nanofibers Containing Curcumin and Anthocyanins for Active-Intelligent Food Packaging. Int. J. Biol. Macromol. 2021, 187, 332–340. [Google Scholar] [CrossRef]
Matrix | Form of Curcumin Incorporation to the Polymer Matrix | Antioxidant | Antibacterial | Application | Ref. |
---|---|---|---|---|---|
Chitosan | Casting method using ethanol solution | - | The curcumin-added film significantly reduced the number of S. aureus and Salmonella during a 3-h exposure period | Promising application for food packaging | [118] |
Gelatin | Casting method using SDS solution | The scavenging activity of DPPH and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) increased to 76.2% and 88.1%, respectively, when gelatin was mixed with 1.5 wt% curcumin, showing very effective antioxidant activity | Gelatin/curcumin composite film showed certain antibacterial activity against food-borne pathogens E. coli and L. monocytogenes | Ensure food safety and extend food shelf life | [66] |
Gelatin | Solution casting method using ethanolwater mixture | Adding curcumin can significantly improve the oxidation resistance of the film | Gelatin-curcumin films showed no antimicrobial activity against Salmonella enteritidis, E. coli, Bacillus cereus and Staphylococcus aureus, a result that can be attributed at least in part to the low curcumin concentrations used in the films studied | Intelligent food packaging and reflect the quality of product based on the capacity to sense pH change | [119] |
Pectin/chitosan | Solution casting method using water (containing 1 mL deep eutectic solvent (DES)) | The DPPH and ABTS radical inhibition rates of the composite film were 58.66% and 29.07%, respectively | The film has excellent bactericidal performance and inhibits the growth of microorganisms | Monitor the quality of pork | [64] |
Polylactic acid (PLA)/fenugreek essential oil | Solution casting method | The ABTS and DPPH scavenging activity of curcumin-loaded films increased significantly to 63.8% and 53.5%, respectively | PLA/Cur film had certain antibacterial activity against foodborne pathogenic bacteria, E. coli and S. aureus | Extend shelf life of strawberries | [110] |
Carboxymethyl cellulose | Solution casting method using distilled water | The composite film added with curcumin showed strong antioxidant activity. When 1 wt% curcumin was added, its scavenging activity was significantly increased to 40.2% and 92.5%. The increase in antioxidant activity of the curcumin composite film depends on the concentration of curcumin | The composite film added with curcumin showed antibacterial effect on E. coli and L. monocytogenes, and the growth of the tested bacteria was delayed | Prevent food photooxidation, ensure food safety and prolong food shelf | [73] |
Tara gum/polyvinyl alcohol (PVA) | Solution casting method using NaOH solution | The DPPH scavenging capacity was increased from 1.81% to 35.16% as the curcumin content increased to 5% | - | Yield new designs for the protection of fatty foods. | [61] |
Starch extracted from proso millet | Solution casting method using NaOH solution | The DPPH and ABTS of proso millet (PMS), with curcumin content of 3%, were 100% and 42.96%, respectively | New active packaging materials | [120] | |
Whey protein isolate (WPI) | Solution casting method | The films enriched with curcumin presented good antioxidant properties | - | Fabricate bioactive edible antioxidant films | [121] |
Pistachio green pectin/poly vinyl alcohol (PVA) | Solution casting method | The PGHP/PVA/curcumin films showed a clear antibacterial activity against E. coli and S. aurous (with inhibition zones of 6.3 mm and 4.7 mm, respectively) | Monitor the quality of fish | [122] | |
Thermoplastic cassava starch (TPCS)/poly(butylene adipate-co-terephthalate) (PBAT) | Solution casting method using blow extrusion | The film containing curcumin had antioxidant activity | The addition of curcumin enhances the antibacterial activity against Gram-positive (S. aureus) and Gram-negative (P. aeruginosa and E. coli) bacteria | Application in normal sub oil packaging was verified | [123] |
Carboxymethyl cellulose/gelatin/curcumin/chitosan | Solution casting method using emulsion | - | It has inhibitory effect on E. coli and S. aureus | Monitoring the qality of pork during storage | [92] |
Gallic acid/quercetin | Nano emulsions (NE) | Curcumin NE-loaded gelatin composite films exhibited the highest antioxidant activity (27.20, 45.9 and 60.51%) at 5%, 10% and 20% NE concentrations, respectively | Curcumin-gelatin film had antibacterial activity against S. typhimurium (6.97mm) and E. coli (7.47 mm) | Extend shelf life of fresh broilers to 17 days | [124] |
Zein | Electrostatic spinning | The composite film had antibacterial activities against E. coli and S. aureus, and the inhibition efficiency increased with the increase of curcumin content | Potential for antibacterial applications | [91] | |
Konjac glucomannan and zein | 80% ethanol solution for electrospinning | The DPPH scavenging activity of the film increased by about 15% | The film containing curcumin has good bacteriostatic effect on E. coli and S. aureus, and the bacteriostatic range is about 12–20 mm | Potential application in food packaging | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhou, S.; Li, N.; Lin, D. Curcumin: A Magical Small Molecule with a Large Role in Active-Intelligent Degradable Food Packaging. Int. J. Mol. Sci. 2025, 26, 3917. https://doi.org/10.3390/ijms26083917
Wang D, Zhou S, Li N, Lin D. Curcumin: A Magical Small Molecule with a Large Role in Active-Intelligent Degradable Food Packaging. International Journal of Molecular Sciences. 2025; 26(8):3917. https://doi.org/10.3390/ijms26083917
Chicago/Turabian StyleWang, Di, Siyu Zhou, Nan Li, and Dehui Lin. 2025. "Curcumin: A Magical Small Molecule with a Large Role in Active-Intelligent Degradable Food Packaging" International Journal of Molecular Sciences 26, no. 8: 3917. https://doi.org/10.3390/ijms26083917
APA StyleWang, D., Zhou, S., Li, N., & Lin, D. (2025). Curcumin: A Magical Small Molecule with a Large Role in Active-Intelligent Degradable Food Packaging. International Journal of Molecular Sciences, 26(8), 3917. https://doi.org/10.3390/ijms26083917