Drugs Metabolism-Related Genes Variants Impact on Anthracycline-Based Chemotherapy Induced Subclinical Cardiotoxicity in Breast Cancer Patients
Abstract
:1. Introduction
2. Results
Drug Metabolism-Related Genes Are Linked to ABCC
3. Discussion
3.1. PON1 rs662
3.2. PON1 rs3735590
3.3. SULT2B1 rs10426377
3.4. UGT1A6 rs17863783
3.5. CBR3 rs1056892
3.6. CBR1 rs9024
3.7. NCF4 rs1883112
3.8. CYBA rs1049255
3.9. Limitations of This Study
4. Materials and Methods
4.1. Study Population
- AC (Doxorubicin 60 mg/m2 IV plus cyclophosphamide 600 mg/m2 IV on day 1 every 3 weeks for four cycles);
- FAC (5-FU 500 mg/m2 IV on days 1 and 8 or days 1 and 4 plus doxorubicin 50 mg/m2 IV on day 1 plus cyclophosphamide 500 mg/m2 IV on day 1 every 3 weeks for six cycles);
- AC-paclitaxel (Doxorubicin 60 mg/m2 IV plus cyclophosphamide 600 mg/m2 IV on day 1 every 3 weeks for four cycles, followed by paclitaxel 80 mg/m2 by 1 h IV infusion weekly for 12 weeks or paclitaxel 175 mg/m2 every 21 days for four cycles);
- TAC (Docetaxel 75 mg/m2 IV plus doxorubicin 50 mg/m2 IV plus cyclophosphamide 500 mg/m2 IV on day 1 every 3 weeks for six cycles);
- FAC-docetaxel (5-FU 500 mg/m2 IV plus doxorubicin 50 mg/m2 IV plus cyclophosphamide 500 mg/m2 IV on day 1 every 3 weeks for three cycles, followed by docetaxel 100 mg/m2 IV every 3 weeks for three cycles);
- AC-docetaxel (Doxorubicin mg/m2 IV plus cyclophosphamide 600 mg/m2 IV on day 1 every 3 weeks for four cycles, followed by docetaxel 100 mg/m2 by 1 h IV every 21 days for four cycles).
4.2. Echocardiography Methods
4.3. Genotyping Methods
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellison, L.F.; Pogany, L.; Mery, L.S. Childhood and adolescent cancer survival: A period analysis of data from the Canadian Cancer Registry. Eur. J. Cancer 2007, 43, 1967–1975. [Google Scholar] [CrossRef]
- Singal, P.K.; Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 1998, 339, 900–905. [Google Scholar] [CrossRef]
- Hahn, V.S.; Lenihan, D.J.; Ky, B. Cancer therapy-induced cardiotoxicity: Basic mechanisms and potential cardioprotective therapies. J. Am. Heart Assoc. 2014, 3, e000665. [Google Scholar] [CrossRef] [PubMed]
- Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genom. 2011, 21, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.-B.; Ewer, M.; et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 893–911. [Google Scholar] [CrossRef]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology. Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Sato, Y.; Takahashi, T.; Tsuchihashi-Makaya, M.; Kotooka, N.; Ikegame, T.; Takura, T.; Yamamoto, T.; Nagayama, M.; Goto, Y.; et al. Multidisciplinary Cardiac Rehabilitation and Long-Term Prognosis in Patients With Heart Failure. Circ. Heart Fail. 2020, 13, e006798. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef]
- Aminkeng, F.; Ross, C.J.D.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016, 82, 683–695. [Google Scholar] [CrossRef]
- Vejpongsa, P.; Yeh, E.T.H. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol. 2014, 64, 938–945. [Google Scholar] [CrossRef]
- Visscher, H.; Ross, C.J.D.; Rassekh, S.R.; Barhdadi, A.; Dubé, M.-P.; Al-Saloos, H.; Sandor, G.S.; Caron, H.N.; van Dalen, E.C.; Kremer, L.C.; et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 2012, 30, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Visscher, H.; Ross, C.J.; Rassekh, S.R.; Sandor, G.S.; Caron, H.N.; Van Dalen, E.C.; Kremer, L.C.; Van Der Pal, H.J.; Rogers, P.C.; Rieder, M.J.; et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer 2013, 60, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.G.; Sun, C.-L.; Landier, W.; Chen, L.; Esparza-Duran, D.; Leisenring, W.; Mays, A.; Friedman, D.L.; Ginsberg, J.P.; Hudson, M.M.; et al. Anthracycline-related cardiomyopathy after childhood cancer: Role of polymorphisms in carbonyl reductase genes—A report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaibi, T.K.; Weitzman, B.; Tahir, U.A.; Asnani, A. Genetics of Anthracycline-Associated Cardiotoxicity. Front. Cardiovasc. Med. 2022, 9, 867873. [Google Scholar] [CrossRef]
- Bock, K.W.; Köhle, C. UDP-glucuronosyltransferase 1A6: Structural, functional, and regulatory aspects. Methods Enzymol. 2005, 400, 57–75. [Google Scholar]
- Ji, Y.; Moon, I.; Zlatkovic, J.; Salavaggione, O.E.; Thomae, B.A.; Eckloff, B.W.; Wieben, E.D.; Schaid, D.J.; Weinshilboum, R.M. Human hydroxysteroid sulfotransferase SULT2B1 pharmacogenomics: Gene sequence variation and functional genomics. J. Pharmacol. Exp. Ther. 2007, 322, 529–540. [Google Scholar] [CrossRef]
- Andrews, P.A.; Brenner, D.E.; Chou, F.T.; Kubo, H.; Bachur, N.R. Facile and definitive determination of human adriamycin and daunoribicin metabolites by high-pressure liquid chromatography. Drug Metab. Dispos. 1980, 8, 152–156. [Google Scholar] [CrossRef]
- Forrest, G.L.; Gonzalez, B. Carbonyl reductase. Chem. Biol. Interact. 2000, 129, 21–40. Available online: http://europepmc.org/abstract/MED/11154733 (accessed on 6 February 2025). [CrossRef]
- Reichwagen, A.; Ziepert, M.; Kreuz, M.; Gödtel-Armbrust, U.; Rixecker, T.; Poeschel, V.; Toliat, M.R.; Nürnberg, P.; Tzvetkov, M.; Deng, S.; et al. Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20(+) B-cell lymphoma. Pharmacogenomics 2015, 16, 361–372. [Google Scholar] [CrossRef]
- Mazaheri, M.; Karimian, M.; Behjati, M.; Raygan, F.; Hosseinzadeh Colagar, A. Association analysis of rs1049255 and rs4673 transitions in p22phox gene with coronary artery disease: A case-control study and a computational analysis. Ir. J. Med. Sci. 2017, 186, 921–928. [Google Scholar] [CrossRef]
- Chio, I.I.C.; Tuveson, D.A. ROS in Cancer: The Burning Question. Trends Mol. Med. 2017, 23, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.G.; Piskounova, E.; Morrison, S.J. Cancer, Oxidative Stress, and Metastasis. Cold Spring Harb. Symp. Quant. Biol. 2016, 81, 163–175. [Google Scholar] [CrossRef]
- Shunmoogam, N.; Naidoo, P.; Chilton, R. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc. Health Risk Manag. 2018, 14, 137–143. [Google Scholar] [CrossRef]
- Odawara, M.; Tachi, Y.; Yamashita, K. Paraoxonase polymorphism (Gln192-Arg) is associated with coronary heart disease in Japanese noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1997, 82, 2257–2260. [Google Scholar] [CrossRef]
- Hassan, M.A.; Al-Attas, O.S.; Hussain, T.; Al-Daghri, N.M.; Alokail, M.S.; Mohammed, A.K.; Vinodson, B. The Q192R polymorphism of the paraoxonase 1 gene is a risk factor for coronary artery disease in Saudi subjects. Mol. Cell. Biochem. 2013, 380, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xia, P.; Liu, M.; Ji, X.M.; Bin Sun, H.; Tao, L.; Mu, Q.W. PON gene polymorphisms and ischaemic stroke: A systematic review and meta analysis. Int. J. Stroke 2013, 8, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.; Chen, Z.; Zhao, X.; Qiu, L.; Liu, X.; Liu, R.; Guo, W.; He, G.; Li, J.; Zhu, X. Oxidative stress-related genetic polymorphisms are associated with the prognosis of metastatic gastric cancer patients treated with epirubicin, oxaliplatin and 5-fluorouracil combination chemotherapy. PLoS ONE 2014, 9, e116027. [Google Scholar] [CrossRef]
- Liu, M.-E.; Liao, Y.-C.; Lin, R.-T.; Wang, Y.-S.; Hsi, E.; Lin, H.-F.; Chen, K.-C.; Juo, S.-H.H. A functional polymorphism of PON1 interferes with microRNA binding to increase the risk of ischemic stroke and carotid atherosclerosis. Atherosclerosis 2013, 228, 161–167. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Zhu, M.; Zhang, W.; Zhang, H.; Li, H.; Zou, C. Functional SNP in the 3′UTR of PON1 is Associated with the Risk of Calcific Aortic Valve Stenosis via MiR-616. Cell. Physiol. Biochem. 2018, 45, 1390–1398. [Google Scholar] [CrossRef]
- Lv, M.; Sun, D.; Chen, L. Identification of Prognostic Value of Rs3735590 Polymorphism in 3′-Untranslated Region (3′-UTR) of Paraoxonase 1 (PON-1) in Chronic Obstructive Pulmonary Disease Patients who Received Coronary Artery Bypass Grafting (CABG). Cell. Physiol. Biochem. 2018, 47, 1809–1818. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, Y.; Zhang, C.; Xue, J.; Wu, X.; Wang, C. Relationship of microRNA 616 gene polymorphism with prognosis of patients with premature coronary artery disease. Int. J. Clin. Pharmacol Ther. 2016, 54, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Common Terminology Criteria for Adverse Events v3.0 (CTCAE). In Principles and Practice of Clinical Trial Medicine; Elsevier: Amsterdam, The Netherlands, 2008.
- Leger, K.J.; Cushing-Haugen, K.; Hansen, J.A.; Fan, W.; Leisenring, W.M.; Martin, P.J.; Zhao, L.P.; Chow, E.J. Clinical and Genetic Determinants of Cardiomyopathy Risk among Hematopoietic Cell Transplantation Survivors. Biol. Blood Marrow Transplant. 2016, 22, 1094–1101. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Lipsitz, S.R.; Kutok, J.L.; Miller, T.L.; Colan, S.D.; Neuberg, D.S.; Stevenson, K.E.; Fleming, M.D.; Sallan, S.E.; Franco, V.I.; et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer 2013, 119, 3555–3562. [Google Scholar] [CrossRef]
- Blanco, J.G.; Leisenring, W.M.; Gonzalez-Covarrubias, V.M.; Kawashima, T.I.; Davies, S.M.; Relling, M.V.; Robison, L.L.; Sklar, C.A.; Stovall, M.; Bhatia, S. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 2008, 112, 2789–2795. [Google Scholar] [CrossRef]
- Hertz, D.L.; Caram, M.V.; Kidwell, K.M.; Thibert, J.N.; Gersch, C.; Seewald, N.J.; Smerage, J.; Rubenfire, M.; Henry, N.L.; Cooney, K.A.; et al. Evidence for association of SNPs in ABCB1 and CBR3, but not RAC2, NCF4, SLC28A3 or TOP2B, with chronic cardiotoxicity in a cohort of breast cancer patients treated with anthracyclines. Pharmacogenomics 2016, 17, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Serie, D.J.; Crook, J.E.; Necela, B.M.; Dockter, T.J.; Wang, X.; Asmann, Y.W.; Fairweather, D.; Bruno, K.A.; Colon-Otero, G.; Perez, E.A.; et al. Genome-wide association study of cardiotoxicity in the NCCTG N9831 (Alliance) adjuvant trastuzumab trial. Pharmacogenet. Genom. 2017, 27, 378–385. [Google Scholar] [CrossRef]
- Quiñones-Lombraña, A.; Ferguson, D.; Hageman Blair, R.; Kalabus, J.L.; Redzematovic, A.; Blanco, J.G. Interindividual variability in the cardiac expression of anthracycline reductases in donors with and without Down syndrome. Pharm. Res. 2014, 31, 1271–1279. [Google Scholar] [CrossRef]
- Hellmann, F.; Völler, S.; Krischke, M.; Jamieson, D.; André, N.; Bisogno, G.; Boddy, A.; Hempel, G. Genetic Polymorphisms Affecting Cardiac Biomarker Concentrations in Children with Cancer: An Analysis from the “European Paediatric Oncology Off-patents Medicines Consortium” (EPOC). Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.D.; Williams, D.A.; Gifford, M.A.; Li, L.L.; Du, X.; Fisherman, J.; Orkin, S.H.; Doerschuk, C.M.; Dinauer, M.C. Mouse model of X–linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 1995, 9, 202–209. [Google Scholar] [CrossRef]
- Touyz, R.M.; Mercure, C.; He, Y.; Javeshghani, D.; Yao, G.; Callera, G.E.; Yogi, A.; Lochard, N.; Reudelhuber, T.L. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 2005, 45, 530–537. [Google Scholar] [CrossRef]
- Carrasco, R.; Castillo, R.L.; Gormaz, J.G.; Carrillo, M.; Thavendiranathan, P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. Oxidative Med. Cell. Longev. 2021, 2021, 8863789. [Google Scholar] [CrossRef] [PubMed]
- Forrest, G.L.; Gonzalez, B.; Tseng, W.; Li, X.; Mann, J. Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res. 2000, 60, 5158–5164. [Google Scholar] [PubMed]
- Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M.R.; Suk, E.-K.; et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 2005, 112, 3754–3762. [Google Scholar] [CrossRef] [PubMed]
- Cascales, A.; Pastor-Quirante, F.; Sánchez-Vega, B.; Luengo-Gil, G.; Corral, J.; Ortuño-Pacheco, G.; Vicente, V.; Peña, F.A. Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist 2013, 18, 446–453. [Google Scholar] [CrossRef]
- Seidman, A.; Hudis, C.; Pierri, M.K.; Shak, S.; Paton, V.; Ashby, M.; Murphy, M.; Stewart, S.J.; Keefe, D. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol. 2002, 20, 1215–1221. [Google Scholar] [CrossRef]
Characteristics | All n = 81 (%) | Controls n = 51 (%) | ABCC Group n = 30 (%) | p Value |
---|---|---|---|---|
Age, years (mean ± SD) | 54.11 ± 9.4 | 54.8 ± 8.9 | 52.9 ± 10.3 | 0.365 |
≤65 years | 73 (90.1) | 48 (94.1) | 25 (83.3) | 0.139 |
>65 years | 8 (9.9) | 3 (5.9) | 5 (16.7) | |
Arterial hypertension | 32 (39.5) | 9 (17.6) | 23 (76.7) | <0.0001 |
Positive family history of cardiovascular disease | 20 (24.7) | 4 (7.8) | 16 (53.3) | <0.0001 |
Diabetes mellitus | 13 (16.0) | 6 (11.8) | 7 (23.3) | 0.215 |
Dyslipidemia | 19 (23.5) | 9 (17.6) | 10 (33.3) | 0.108 |
Smoking status | 16 (19.8) | 8 (15.7) | 8 (26.7) | 0.231 |
Body mass index (BMI), kg/m2 (mean ± SD) | 27.098 ± 5.599 | 27.288 ± 5.835 | 26.774 ± 5.255 | 0.692 |
<25 kg/m2 | 32 (39.5) | 21 (41.2) | 11 (36.7) | 0.688 |
≥25 kg/m2 | 49 (60.5) | 30 (58.5) | 19 (63.3) | |
Pathological stage (pTNM) | ||||
0 | 3 (3.7) | 2 (3.9) | 1 (3.3) | 0.483 |
IA | 21 (25.9) | 14 (27.5) | 7 (23.3) | |
IB | 14 (17.3) | 8 (15.7) | 6 (20.0) | |
IIA | 27 (33.3) | 18 (35.3) | 9 (30.0) | |
IIB | 7 (8.6) | 6 (11.8) | 1 (3.3) | |
IIIA | 7 (8.6) | 2 (3.9) | 5 (16.7) | |
IIIB | 2 (2.5) | 1 (2.0) | 1 (3.3) | |
Breast side | ||||
left | 33 (40.7) | 19 (37.3) | 14 (46.7) | 0.678 |
right | 47 (58.0) | 31 (60.8) | 16 (53.3) | |
both | 1 (1.2) | 1 (2.0) | 0 (0.0) | |
Differentiation | ||||
G1 | 1 (1.2) | 1 (2.0) | 0 (0.0) | 0.531 |
G2 | 64 (79.0) | 38 (74.5) | 26 (86.7) | |
G3 | 16 (19.8) | 12 (23.5) | 4 (13.3) | |
Luminal A subtype | 29 (35.8) | 16 (31.4) | 13 (43.3) | 0.278 |
Luminal B subtype | 28 (34.6) | 18 (35.3) | 10 (33.3) | 0.858 |
HER2-enriched subtype | 17 (21.0) | 11 (21.6) | 6 (20.0) | 0.867 |
Triple negative subtype | 13 (16.0) | 10 (19.6) | 3 (10.0) | 0.353 |
Estrogen receptor (ER) | ||||
negative (−) | 26 (32.1) | 18 (35.3) | 8 (26.7) | 0.422 |
positive (+) | 55 (67.9) | 33 (64.7) | 22 (73.3) | |
Progesterone receptor (PR) | ||||
negative (−) | 33 (40.7) | 24 (47.1) | 9 (30.0) | 0.131 |
positive (+) | 48 (59.3) | 27 (52.9) | 21 (70.0) | |
Human epidermal growth factor receptor 2 (HER2) | ||||
negative (−) | 64 (79.0) | 40 (78.4) | 24 (80.0) | 0.867 |
positive (+) | 17 (21.0) | 11 (21.6) | 6 (20.0) |
Allele/Genotype | Controls (n = 51) | ABCC Group (n = 30) | OR (95% CI) | p Value |
---|---|---|---|---|
PON1 rs662 | ||||
GG | 3 (5.9) | 1 (3.3) | 0.517 (0.05–5.321) | 0.579 |
AG | 17 (33.3) | 9 (30.0) | 0.821 (0.307–2.196) | 0.694 |
AA | 31 (60.8) | 20 (66.7) | 1 (reference) | |
GG, AG vs. AA | 0.775 (0.301–1.993) | 0.597 | ||
GG vs. AG, AA | 0.552 (0.055–5.556) | 0.614 | ||
PON1 rs3735590 | ||||
CT | 6 (11.8) | 0 | NA | NA |
CC | 45 (88.2) | 30 (100) | 1 (reference) | |
SULT2B1 rs10426377 | ||||
AA | 7 (13.7) | 3 (10.0) | 0.857 (0.192–3.830) | 0.840 |
AC | 16 (31.4) | 13 (43.3) | 1.625 (0.614–4.301) | 0.328 |
CC | 28 (54.9) | 14 (46.7) | 1 (reference) | |
AA, AC vs. CC | 1.391 (0.563–3.439) | 0.474 | ||
AA vs. AC, CC | 0.698 (0.166–2.933) | 0.624 | ||
UGT1A6 rs17863783 | ||||
TT | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
GT | 3 (5.9) | 0 (0.0) | 0 (0.0) | NA |
GG | 48 (94.1) | 30 (100.0) | 1 (reference) | |
TT, GT vs. GG | NA | NA | ||
TT vs. GT, GG | NA | NA | ||
CBR1 rs9024 | ||||
AA | 3 (5.9) | 0 (0.0) | NA | NA |
AG | 11 (21.5) | 9 (30.0) | 1.442 (0.514–4.042) | 0.487 |
GG | 37 (72.5) | 21 (70.0) | 1 (reference) | |
AA, AG vs. GG | 1.133 (0.419–3.060) | 0.806 | ||
AA vs. AG, GG | NA | NA | ||
CBR3 rs1056892 | ||||
AA | 9 (17.6) | 5 (16.7) | 0.556 (0.186–1.658) | 0.292 |
AG | 22 (43.1) | 15 (50.0) | 0.682 (0.354–1.314) | 0.253 |
GG | 20 (39.2) | 10 (33.3) | 1 (reference) | |
AA, AG vs. GG | 0.645 (0.368–1.132) | 0.127 | ||
AA vs. AG, GG | 0.933 (0.281–3.099) | 0.910 | ||
NCF4 rs1883112 | ||||
AA | 8 (15.7) | 4 (13.3) | 0.500 (0.151–1.660) | 0.258 |
AG | 27 (52.9) | 13 (43.3) | 0.481 (0.248–0.933) | 0.030 |
GG | 16 (31.4) | 13 (43.3) | 1 (reference) | |
AA, AG vs. GG | 0.486 (0.272–0.867) | 0.015 | ||
AA vs. AG, GG | 0.827 (0.226–3.020) | 0.774 | ||
CYBA rs1049255 | ||||
AA | 16 (31.4) | 11 (36.7) | 0.688 (0.319–1.481) | 0.339 |
AG | 26 (51.0) | 13 (43.3) | 0.500 (0.257–0.973) | 0.041 |
GG | 9 (17.6) | 6 (20.0) | 1 (reference) | |
AA, AG vs. GG | 0.571 (0.346–0.944) | 0.029 | ||
AA vs. AG, GG | 1.266 (0.490–3.273) | 0.626 |
Covarities | OR | 95% CI | p Value |
---|---|---|---|
PON1 rs662 | |||
GG vs. AA | NA | NA | NA |
AG vs. AA | 0.724 | 0.246–4.946 | 0.804 |
Age > 65 years | 7.268 | 0.498–89.614 | 0.186 |
Arterial hypertension | 22.994 | 3.657–124.414 | <0.0001 |
Cardiovascular disease in family history | 25.046 | 4.821–159.841 | 0.001 |
Diabetes mellitus | 3.258 | 0.421–24.614 | 0.154 |
Dyslipidemia | 1.756 | 0.315–9.798 | 0.684 |
Smoking | 0.684 | 0.048–4.978 | 0.594 |
≥25 kg/m2 Body mass index (BMI) | 0.714 | 0.089–2.460 | 0.284 |
PON1 rs3735590 | |||
CT vs. CC | NA | NA | NA |
Age > 65 years | 2.694 | 0.847–28.284 | 0.451 |
Arterial hypertension | 19.983 | 3.546–79.159 | <0.0001 |
Cardiovascular disease in family history | 23.657 | 3.368–135.687 | 0.001 |
Diabetes mellitus | 3.656 | 0.494–2.834 | 0.368 |
Dyslipidemia | 1.219 | 0.213–8.343 | 0.484 |
Smoking | 0.198 | 0.047–4.965 | 0.498 |
≥25 kg/m2 Body mass index (BMI) | 0.651 | 0.023–2.552 | 0.367 |
SULT2B1 rs10426377 | |||
AA vs. CC | 0.084 | 0.005–1.350 | 0.080 |
AC vs. CC | 0.788 | 0.169–3.678 | 0.762 |
Age > 65 years | 6.638 | 0.599–73.604 | 0.123 |
Arterial hypertension | 26.902 | 5.227–138.464 | <0.0001 |
Cardiovascular disease in family history | 25.046 | 3.780–165.944 | 0.001 |
Diabetes mellitus | 3.043 | 0.524–17.662 | 0.215 |
Dyslipidemia | 1.756 | 0.315–9.798 | 0.521 |
Smoking | 0.502 | 0.063–3.978 | 0.514 |
≥25 kg/m2 Body mass index (BMI) | 0.373 | 0.075–1.846 | 0.227 |
UGT1A6 rs17863783 | |||
TT vs. GG | NA | NA | NA |
GT vs. GG | NA | NA | NA |
Age > 65 years | 3.202 | 0.392–26.126 | 0.277 |
Arterial hypertension | 16.196 | 3.806–68.922 | <0.0001 |
Cardiovascular disease in family history | 19.836 | 3.377–116.513 | 0.001 |
Diabetes mellitus | 2.422 | 0.439–13.361 | 0.310 |
Dyslipidemia | 2.364 | 0.464–12.042 | 0.300 |
Smoking | 0.511 | 0.072–3.598 | 0.500 |
≥25 kg/m2 Body mass index (BMI) | 0.507 | 0.113–2.267 | 0.374 |
CBR1 rs9024 | |||
AA vs. GG | NA | NA | NA |
AG vs. GG | 1.492 | 0.301–7.398 | 0.624 |
Age > 65 years | 3.087 | 0.365–26.116 | 0.301 |
Arterial hypertension | 16.253 | 3.721–70.993 | <0.0001 |
Cardiovascular disease in family history | 19.357 | 3.239–115.671 | 0.001 |
Diabetes mellitus | 3.027 | 0.473–19.355 | 0.242 |
Dyslipidemia | 1.960 | 0.399–9.628 | 0.407 |
Smoking | 0.448 | 0.064–3.144 | 0.419 |
≥25 kg/m2 Body mass index (BMI) | 0.431 | 0.099–1.880 | 0.263 |
CBR3 rs1056892 | |||
AA vs. GG | 0.597 | 0.068–5.212 | 0.640 |
AG vs. GG | 1.341 | 0.274–6.557 | 0.717 |
Age > 65 years | 4.933 | 0.452–53.887 | 0.191 |
Arterial hypertension | 19.214 | 4.442–83.107 | <0.0001 |
Cardiovascular disease in family history | 18.842 | 3.350–105.986 | 0.001 |
Diabetes mellitus | 2.115 | 0.341–13.123 | 0.421 |
Dyslipidemia | 1.774 | 0.339–9.272 | 0.497 |
Smoking | 0.424 | 0.057–3.158 | 0.403 |
≥25 kg/m2 Body mass index (BMI) | 0.431 | 0.095–1.957 | 0.276 |
NCF4 rs1883112 | |||
AA vs. GG | 0.297 | 0.027–3.304 | 0.323 |
AG vs. GG | 0.312 | 0.067–1.461 | 0.139 |
Age > 65 years | 3.399 | 0.400–28.863 | 0.262 |
Arterial hypertension | 22.970 | 4.795–110.037 | <0.0001 |
Cardiovascular disease in family history | 21.796 | 3.493–136.028 | 0.001 |
Diabetes mellitus | 3.164 | 0.506–19.785 | 0.218 |
Dyslipidemia | 2.417 | 0.456–12.805 | 0.300 |
Smoking | 0.548 | 0.075–4.016 | 0.554 |
≥25 kg/m2 Body mass index (BMI) | 0.321 | 0.061–1.683 | 0.179 |
CYBA rs1049255 | |||
AA vs. GG | 3.829 | 0.443–33.095 | 0.222 |
AG vs. GG | 0.933 | 0.129–6.729 | 0.945 |
Age > 65 years | 2.454 | 0.313–19.210 | 0.393 |
Arterial hypertension | 30.349 | 5.609–164.211 | <0.0001 |
Cardiovascular disease in family history | 26.937 | 3.524–205.899 | 0.002 |
Diabetes mellitus | 3.019 | 0.474–19.231 | 0.242 |
Dyslipidemia | 1.950 | 0.382–9.961 | 0.422 |
Smoking | 0.346 | 0.044–2.713 | 0.313 |
≥25 kg/m2 Body mass index (BMI) | 0.419 | 0.090–1.951 | 0.268 |
Regimen | Patients, n = 81 (%) | Controls, n = 51 (%) | ABCC Group, n = 30 (%) | p Value |
---|---|---|---|---|
AC | 8 (9.9) | 5 (9.8) | 3 (10.0) | 1.000 |
AC-paclitaxel | 53 (65.4) | 31 (60.8) | 22 (73.3) | 0.251 |
AC-docetaxel | 7 (8.6) | 6 (11.8) | 1 (3.3) | 0.250 |
FAC-docetaxel | 5 (6.2) | 4 (7.8) | 1 (3.3) | 0.646 |
TAC | 5 (6.2) | 2 (3.9) | 3 (10.0) | 0.354 |
FAC | 3 (3.7) | 3 (5.9) | 0 (0.0) | 0.292 |
Doxorubicin cumulative dose (mg/m2), (median, min.–max.) | 37.740 (129.000–303.200) | 236.250 (129.000–303.200) | 239.350 (146.340–291.000) | 0.339 |
Reagents | Volume for One Reaction (μL) |
---|---|
2× TaqManTM Universal Master Mix II, no UNG | 12.5 |
20× TaqMan SNP Genotyping Assay stock | 1.25 |
Nuclease free water | 9.25 |
Total volume | 23 |
DNA | 2 |
Final volume | 25 |
Real-Time PCR Stage | Times and Temperatures | Cycles |
---|---|---|
DNA polymerase activation | 10 min for 95 °C | 1 |
DNA melting | 15 s for 95 °C | 40 |
DNA annealing/extending | 1 min for 60 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaitiekus, D.; Muckiene, G.; Verikas, D.; Vaitiekiene, A.; Astasauskaite, S.; Gerbutavicius, R.; Bartnykaite, A.; Ugenskienė, R.; Jurkevičius, R.; Juozaitytė, E. Drugs Metabolism-Related Genes Variants Impact on Anthracycline-Based Chemotherapy Induced Subclinical Cardiotoxicity in Breast Cancer Patients. Int. J. Mol. Sci. 2025, 26, 4051. https://doi.org/10.3390/ijms26094051
Vaitiekus D, Muckiene G, Verikas D, Vaitiekiene A, Astasauskaite S, Gerbutavicius R, Bartnykaite A, Ugenskienė R, Jurkevičius R, Juozaitytė E. Drugs Metabolism-Related Genes Variants Impact on Anthracycline-Based Chemotherapy Induced Subclinical Cardiotoxicity in Breast Cancer Patients. International Journal of Molecular Sciences. 2025; 26(9):4051. https://doi.org/10.3390/ijms26094051
Chicago/Turabian StyleVaitiekus, Domas, Gintare Muckiene, Dovydas Verikas, Audrone Vaitiekiene, Skaiste Astasauskaite, Rolandas Gerbutavicius, Agne Bartnykaite, Rasa Ugenskienė, Renaldas Jurkevičius, and Elona Juozaitytė. 2025. "Drugs Metabolism-Related Genes Variants Impact on Anthracycline-Based Chemotherapy Induced Subclinical Cardiotoxicity in Breast Cancer Patients" International Journal of Molecular Sciences 26, no. 9: 4051. https://doi.org/10.3390/ijms26094051
APA StyleVaitiekus, D., Muckiene, G., Verikas, D., Vaitiekiene, A., Astasauskaite, S., Gerbutavicius, R., Bartnykaite, A., Ugenskienė, R., Jurkevičius, R., & Juozaitytė, E. (2025). Drugs Metabolism-Related Genes Variants Impact on Anthracycline-Based Chemotherapy Induced Subclinical Cardiotoxicity in Breast Cancer Patients. International Journal of Molecular Sciences, 26(9), 4051. https://doi.org/10.3390/ijms26094051