Computer-Aided Discovery of Natural Compounds Targeting the ADAR2 dsRBD2-RNA Interface and Computational Modeling of Full-Length ADAR2 Protein Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking to the ADAR2 dsRBD2-GluR-2 Interface
2.2. Physicochemical Properties and Safety Profiling
2.3. Protein–Ligand Molecular Dynamics Simulations and Free Binding Energy Calculations
2.3.1. RMSD Evaluation for dsRBD2–Ligand Complexes
2.3.2. Rg Evaluation for dsRBD2–Ligand Complexes
2.3.3. RMSF Evaluation for dsRBD2–Ligand Complexes
2.3.4. Free Binding Energy Calculations for the dsRBD2–Ligand Complexes
2.4. RNA–Protein–Ligand Simulations
2.4.1. RNA–Protein–Ligand RMSD Analysis
2.4.2. RNA–Protein–Ligand Rg Analysis
2.4.3. RNA–Protein–Ligand RMSF Analysis
2.4.4. Free Binding Energy Calculations of the RNA–Protein–Ligand Complexes
2.4.5. Reproducibility of Top Four Compounds
2.5. Molecular Interactions
2.5.1. Protein–Ligand Interaction Plots (PLIP)
2.5.2. Per-Residue Energy Contributions
2.5.3. Changes in Hydrogen Bonding
2.6. Lead Compound Characterization
2.6.1. PASS, Biological Activity Prediction
2.6.2. Structural Similarity Search
2.7. Full-Length ADAR2 Models
2.7.1. Homology Modeling Full-Length ADAR2
2.7.2. Model Quality Assessment and Refinement
2.7.3. Evaluation of Model Stability Post 1.1 μs MD Simulations
3. Materials and Methods
3.1. Receptor and RNA Substrate Preparation
3.2. Screening Library Preparation
3.3. Molecular Docking to the Protein–RNA Interface
3.4. ADMET Prediction
3.5. Molecular Dynamics Simulations
3.6. MM/PBSA Calculations
3.7. Technical Replicates
3.8. Prediction of Biological Activity for Lead Compounds
3.9. Protein–Ligand Interactions
3.10. Generating Full-Length ADAR2 Models
3.10.1. Homology Modeling
3.10.2. Simulation-Based Model Refinement
3.10.3. Model Quality Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A-I | Adenosine to Inosine |
ADAR | Adenosine deaminases acting on RNA |
GBM | Glioblastoma multiforme |
dsRBD | Double-stranded RNA binding domain |
RBP | RNA binding proteins |
NMR | Nuclear magnetic resonance |
MM/PBSA | Molecular mechanics Poisson–Boltzmann surface area |
MD | Molecular dynamics |
AMPA | α-hydroxyl-5-methyl-4-isoxazole-propionate |
GluR-2 | Glutamate receptor 2 |
GROMACS | GROningen Machine for Chemical Simulations |
TCM | Traditional Chinese Medicine |
UFF | Universal Force Field |
ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
RMSD | Root mean squared deviation |
RMSF | Root mean squared fluctuation |
Rg | Radius of gyration |
vdW | van der Waals |
SASA | Solvent-accessible surface area |
PASS | Prediction of biological activity spectra of substances |
RCSB PDB | Research collaboratory for structural bioinformatics protein data bank |
Molpdf | Molecular probability density function |
ProSA | Protein structure analysis program |
SAVES | Structure analysis and verification server |
SAR | Structure activity relationships |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
GSH | Glutathione |
GST | Glutathione S-transferase |
GPX-1 | Glutathione peroxidase-1 |
References
- Heraud-Farlow, J.E.; Walkley, C.R. What Do Editors Do? Understanding the Physiological Functions of A-to-I RNA Editing by Adenosine Deaminase Acting on RNAs. Open Biol. 2020, 10, 200085. [Google Scholar] [CrossRef]
- Bass, B.L. RNA Editing by Adenosine Deaminases That Act on RNA. Annu. Rev. Biochem. 2002, 71, 817–846. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chung, D.H.; Monteleone, L.R.; Li, J.; Chiang, Y.; Toney, M.D.; Beal, P.A. RNA Binding Candidates for Human ADAR3 from Substrates of a Gain of Function Mutant Expressed in Neuronal Cells. Nucleic Acids Res. 2019, 47, 10814. [Google Scholar] [CrossRef]
- Picardi, E.; Manzari, C.; Mastropasqua, F.; Aiello, I.; D’Erchia, A.M.; Pesole, G. Profiling RNA Editing in Human Tissues: Towards the Inosinome Atlas. Sci. Rep. 2015, 5, 14941. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Wei, J.; Song, G.; Zhao, Y. A-to-I RNA Editing in Cancer: From Evaluating the Editing Level to Exploring the Editing Effects. Front. Oncol. 2021, 10, 632187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, H.; Xu, J.; Gao, W. ADAR, the Carcinogenesis Mechanisms of ADAR and Related Clinical Applications. Ann. Transl. Med. 2019, 7, 686. [Google Scholar] [CrossRef] [PubMed]
- Nishikura, K. Editor Meets Silencer: Crosstalk between RNA Editing and RNA Interference. Nat. Rev. Mol. Cell Biol. 2006, 7, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Nishikura, K. Functions and Regulation of RNA Editing by ADAR Deaminases. Annu. Rev. Biochem. 2010, 79, 321–349. [Google Scholar] [CrossRef]
- Kawahara, Y.; Zinshteyn, B.; Sethupathy, P.; Iizasa, H.; Hatzigeorgiou, A.G.; Nishikura, K. Redirection of Silencing Targets by Adenosine-to-Inosine Editing of MiRNAs. Science 2007, 315, 1137–1140. [Google Scholar] [CrossRef]
- Kung, C.P.; Maggi, L.B.; Weber, J.D. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front. Endocrinol. 2018, 9, 762. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Zhang, Y.; Liu, J.; Zhao, B. ADAR1-Mediated RNA Editing and Its Role in Cancer. Front. Cell Dev. Biol. 2022, 10, 956649. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, J.J.; Manguso, R.T.; Cheruiyot, C.K.; Bi, K.; Panda, A.; Iracheta-Vellve, A.; Miller, B.C.; Du, P.P.; Yates, K.B.; Dubrot, J.; et al. Loss of ADAR1 in Tumours Overcomes Resistance to Immune Checkpoint Blockade. Nature 2019, 565, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, Y.; Tay, F.C.; Lam, D.H.; Sandanaraj, E.; Tang, C.; Ang, B.-T.; Wang, S. Attenuated Adenosine-to-Inosine Editing of MicroRNA-376a* Promotes Invasiveness of Glioblastoma Cells. J. Clin. Investig. 2012, 122, 4059–4076. [Google Scholar] [CrossRef]
- Tomaselli, S.; Galeano, F.; Alon, S.; Raho, S.; Galardi, S.; Polito, A.A.; Presutti, C.; Vincenti, S.; Eisenberg, E.; Locatelli, F.; et al. Modulation of MicroRNA Editing, Expression and Processing by ADAR2 Deaminase in Glioblastoma. Genome Biol. 2015, 16, 5. [Google Scholar] [CrossRef]
- Galeano, F.; Rossetti, C.; Tomaselli, S.; Cifaldi, L.; Lezzerini, M.; Pezzullo, M.; Boldrini, R.; Massimi, L.; Di Rocco, C.M.; Locatelli, F.; et al. ADAR2-Editing Activity Inhibits Glioblastoma Growth through the Modulation of the CDC14B/Skp2/P21/P27 Axis. Oncogene 2013, 32, 998–1009. [Google Scholar] [CrossRef]
- Aquino-Jarquin, G. Novel Engineered Programmable Systems for ADAR-Mediated RNA Editing. Mol. Ther. Nucleic Acids 2020, 19, 1065–1072. [Google Scholar] [CrossRef]
- Rosenthal, G.J.; Simeonova, P.; Corsini, E. Asbestos Toxicity: An Immunologic Perspective. Rev. Environ. Health 1999, 14, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Felley-Bosco, E.; MacFarlane, M. Asbestos: Modern Insights for Toxicology in the Era of Engineered Nanomaterials. Chem. Res. Toxicol. 2018, 31, 994–1008. [Google Scholar] [CrossRef] [PubMed]
- Pira, E.; Donato, F.; Maida, L.; Discalzi, G. Exposure to Asbestos: Past, Present and Future. J. Thorac. Dis. 2018, 10, S237–S245. [Google Scholar] [CrossRef]
- Rehrauer, H.; Wu, L.; Blum, W.; Pecze, L.; Henzi, T.; Serre-Beinier, V.; Aquino, C.; Vrugt, B.; de Perrot, M.; Schwaller, B.; et al. How Asbestos Drives the Tissue towards Tumors: YAP Activation, Macrophage and Mesothelial Precursor Recruitment, RNA Editing, and Somatic Mutations. Oncogene 2018, 37, 2645–2659. [Google Scholar] [CrossRef]
- Hariharan, A.; Qi, W.; Rehrauer, H.; Wu, L.; Ronner, M.; Wipplinger, M.; Kresoja-Rakic, J.; Sun, S.; Oton-Gonzalez, L.; Sculco, M.; et al. Heterogeneous RNA Editing and Influence of ADAR2 on Mesothelioma Chemoresistance and the Tumor Microenvironment. Mol. Oncol. 2022, 16, 3949–3974. [Google Scholar] [CrossRef] [PubMed]
- Sakata, K.-I.; Maeda, K.; Sakurai, N.; Liang, S.; Nakazawa, S.; Yanagihara, K.; Kubo, T.; Yoshiyama, H.; Kitagawa, Y.; Hamada, J.-I.; et al. ADAR2 Regulates Malignant Behaviour of Mesothelioma Cells Independent of RNA-Editing Activity. Anticancer Res. 2020, 40, 1307–1314. [Google Scholar] [CrossRef]
- Li, Q.; Kang, C. Targeting RNA-binding Proteins with Small Molecules: Perspectives, Pitfalls and Bifunctional Molecules. FEBS Lett. 2023, 597, 2031–2047. [Google Scholar] [CrossRef]
- Wang, L.; Rowe, R.G.; Jaimes, A.; Yu, C.; Nam, Y.; Pearson, D.S.; Zhang, J.; Xie, X.; Marion, W.; Heffron, G.J.; et al. Small-Molecule Inhibitors Disrupt Let-7 Oligouridylation and Release the Selective Blockade of Let-7 Processing by LIN28. Cell Rep. 2018, 23, 3091–3101. [Google Scholar] [CrossRef]
- Roos, M.; Pradère, U.; Ngondo, R.P.; Behera, A.; Allegrini, S.; Civenni, G.; Zagalak, J.A.; Marchand, J.-R.; Menzi, M.; Towbin, H.; et al. A Small-Molecule Inhibitor of Lin28. ACS Chem. Biol. 2016, 11, 2773–2781. [Google Scholar] [CrossRef]
- Ashley, C.N.; Broni, E.; Miller, W.A. ADAR Family Proteins: A Structural Review. Curr. Issues Mol. Biol. 2024, 46, 3919–3945. [Google Scholar] [CrossRef] [PubMed]
- Macbeth, M.R.; Schubert, H.L.; VanDemark, A.F.; Lingam, A.T.; Hill, C.P.; Bass, B.L. Structural Biology: Inositol Hexakisphosphate Is Bound in the ADAR2 Core and Required for RNA Editing. Science 2005, 309, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Ota, H.; Sakurai, M.; Gupta, R.; Valente, L.; Wulff, B.E.; Ariyoshi, K.; Iizasa, H.; Davuluri, R.V.; Nishikura, K. ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing. Cell 2013, 153, 589. [Google Scholar] [CrossRef]
- Yu, Z.; Luo, R.; Li, Y.; Li, X.; Yang, Z.; Peng, J.; Huang, K. ADAR1 Inhibits Adipogenesis and Obesity by Interacting with Dicer to Promote the Maturation of MiR-155-5P. J. Cell Sci. 2022, 135, jcs259333. [Google Scholar] [CrossRef]
- Deng, P.; Khan, A.; Jacobson, D.; Sambrani, N.; McGurk, L.; Li, X.; Jayasree, A.; Hejatko, J.; Shohat-Ophir, G.; O’Connell, M.A.; et al. Adar RNA Editing-Dependent and -Independent Effects Are Required for Brain and Innate Immune Functions in Drosophila. Nat. Commun. 2020, 11, 1580. [Google Scholar] [CrossRef]
- Stephens, O.M.; Haudenschild, B.L.; Beal, P.A. The Binding Selectivity of ADAR2’s DsRBMs Contributes to RNA-Editing Selectivity. Chem. Biol. 2004, 11, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.; Nishikura, K. RNA Binding-Independent Dimerization of Adenosine Deaminases Acting on RNA and Dominant Negative Effects of Nonfunctional Subunits on Dimer Functions. J. Biol. Chem. 2007, 282, 16061. [Google Scholar] [CrossRef] [PubMed]
- Barraud, P.; Banerjee, S.; Mohamed, W.I.; Jantsch, M.F.; Allain, F.H.T. A Bimodular Nuclear Localization Signal Assembled via an Extended Double-Stranded RNA-Binding Domain Acts as an RNA-Sensing Signal for Transportin 1. Proc. Natl. Acad. Sci. USA 2014, 111, E1852–E1861. [Google Scholar] [CrossRef]
- Stefl, R.; Xu, M.; Skrisovska, L.; Emeson, R.B.; Allain, F.H.T. Structure and Specific RNA Binding of ADAR2 Double-Stranded RNA Binding Motifs. Structure 2006, 14, 345–355. [Google Scholar] [CrossRef]
- Stefl, R.; Oberstrass, F.C.; Hood, J.L.; Jourdan, M.; Zimmermann, M.; Skrisovska, L.; Maris, C.; Peng, L.; Hofr, C.; Emeson, R.B.; et al. The Solution Structure of the ADAR2 DsRBM-RNA Complex Reveals a Sequence-Specific Readout of the Minor Groove. Cell 2010, 143, 225–237. [Google Scholar] [CrossRef]
- Slotkin, W.; Nishikura, K. Adenosine-to-Inosine RNA Editing and Human Disease. Genome Med. 2013, 5, 105. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Levanon, E.Y. A-to-I RNA Editing—Immune Protector and Transcriptome Diversifier. Nat. Rev. Genet. 2018, 19, 473–490. [Google Scholar] [CrossRef]
- Horsch, M.; Seeburg, P.H.; Adler, T.; Aguilar-Pimentel, J.A.; Becker, L.; Calzada-Wack, J.; Garrett, L.; Götz, A.; Hans, W.; Higuchi, M.; et al. Requirement of the RNA-Editing Enzyme ADAR2 for Normal Physiology in Mice. J. Biol. Chem. 2011, 286, 18614–18622. [Google Scholar] [CrossRef]
- Qi, L.; Song, Y.; Chan, T.H.M.; Yang, H.; Lin, C.H.; Tay, D.J.T.; Hong, H.Q.; Tang, S.J.; Tan, K.T.; Huang, X.X.; et al. An RNA Editing/DsRNA Binding-Independent Gene Regulatory Mechanism of ADARs and Its Clinical Implication in Cancer. Nucleic Acids Res. 2017, 45, 10436–10451. [Google Scholar] [CrossRef]
- Anantharaman, A.; Tripathi, V.; Khan, A.; Yoon, J.-H.; Singh, D.K.; Gholamalamdari, O.; Guang, S.; Ohlson, J.; Wahlstedt, H.; Öhman, M.; et al. ADAR2 Regulates RNA Stability by Modifying Access of Decay-Promoting RNA-Binding Proteins. Nucleic Acids Res. 2017, 45, 4189–4201. [Google Scholar] [CrossRef]
- Thuy-Boun, A.S.; Thomas, J.M.; Grajo, H.L.; Palumbo, C.M.; Park, S.; Nguyen, L.T.; Fisher, A.J.; Beal, P.A. Asymmetric Dimerization of Adenosine Deaminase Acting on RNA Facilitates Substrate Recognition. Nucleic Acids Res. 2020, 48, 7958–7972. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Lipinski, C.A. Rule of Five in 2015 and beyond: Target and Ligand Structural Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Abbott, D.M.; Bortolotto, C.; Benvenuti, S.; Lancia, A.; Filippi, A.R.; Stella, G.M. Malignant Pleural Mesothelioma: Genetic and Microenviromental Heterogeneity as an Unexpected Reading Frame and Therapeutic Challenge. Cancers 2020, 12, 1186. [Google Scholar] [CrossRef]
- Soundararajan, R.; Varanasi, S.M.; Patil, S.S.; Srinivas, S.; Hernández-Cuervo, H.; Czachor, A.; Bulkhi, A.; Fukumoto, J.; Galam, L.; Lockey, R.F.; et al. Lung Fibrosis Is Induced in ADAR2 Overexpressing Mice via HuR-Induced CTGF Signaling. FASEB J. 2022, 36, e22143. [Google Scholar] [CrossRef]
- Cheresh, P.; Morales-Nebreda, L.; Kim, S.-J.; Yeldandi, A.; Williams, D.B.; Cheng, Y.; Mutlu, G.M.; Budinger, G.R.S.; Ridge, K.; Schumacker, P.T.; et al. Asbestos-Induced Pulmonary Fibrosis Is Augmented in 8-Oxoguanine DNA Glycosylase Knockout Mice. Am. J. Respir. Cell Mol. Biol. 2015, 52, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Maldonado, A.M.; Durrant, J.D. From Byte to Bench to Bedside: Molecular Dynamics Simulations and Drug Discovery. BMC Biol. 2023, 21, 299. [Google Scholar] [CrossRef]
- Reva, B.A.; Finkelstein, A.V.; Skolnick, J. What Is the Probability of a Chance Prediction of a Protein Structure with an Rmsd of 6 å? Fold. Des. 1998, 3, 141–147. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Tarus, B.; Chevalier, C.; Richard, C.-A.; Delmas, B.; Di Primo, C.; Slama-Schwok, A. Molecular Dynamics Studies of the Nucleoprotein of Influenza A Virus: Role of the Protein Flexibility in RNA Binding. PLoS ONE 2012, 7, e30038. [Google Scholar] [CrossRef]
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of Protein-Ligand Binding Affinity by Hydrogen Bond Pairing. Sci. Adv. 2016, 2, e1501240. [Google Scholar] [CrossRef]
- Parasuraman, S. Prediction of Activity Spectra for Substances. J. Pharmacol. Pharmacother. 2011, 2, 52–53. [Google Scholar] [CrossRef]
- Han, S.-W.; Kim, H.-P.; Shin, J.-Y.; Jeong, E.-G.; Lee, W.-C.; Kim, K.Y.; Park, S.Y.; Lee, D.-W.; Won, J.-K.; Jeong, S.-Y.; et al. RNA Editing in RHOQ Promotes Invasion Potential in Colorectal Cancer. J. Exp. Med. 2014, 211, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Chang, I.Y.-F.; Liu, H.; Ma, C.-P.; Kuo, Y.-P.; Shih, C.-T.; Shih, Y.-H.; Kang, L.; Tan, B.C.-M. Tumor-Associated Intronic Editing of HNRPLL Generates a Novel Splicing Variant Linked to Cell Proliferation. J. Biol. Chem. 2018, 293, 10158–10171. [Google Scholar] [CrossRef]
- Fu, L.; Qin, Y.-R.; Ming, X.-Y.; Zuo, X.-B.; Diao, Y.-W.; Zhang, L.-Y.; Ai, J.; Liu, B.-L.; Huang, T.-X.; Cao, T.-T.; et al. RNA Editing of SLC22A3 Drives Early Tumor Invasion and Metastasis in Familial Esophageal Cancer. Proc. Natl. Acad. Sci. USA 2017, 114, E4631–E4640. [Google Scholar] [CrossRef] [PubMed]
- Shavelle, R.; Vavra-Musser, K.; Lee, J.; Brooks, J. Life Expectancy in Pleural and Peritoneal Mesothelioma. Lung Cancer Int. 2017, 2017, 2782590. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Rusthoven, J.J.; Symanowski, J.; Denham, C.; Kaukel, E.; Ruffie, P.; Gatzemeier, U.; Boyer, M.; Emri, S.; Manegold, C.; et al. Phase III Study of Pemetrexed in Combination With Cisplatin Versus Cisplatin Alone in Patients With Malignant Pleural Mesothelioma. J. Clin. Oncol. 2003, 21, 2636–2644. [Google Scholar] [CrossRef]
- Hajj, G.N.; Cavarson, C.H.; Pinto, C.A.L.; Venturi, G.; Navarro, J.R.; Lima, V.C. Malignant Pleural Mesothelioma: An Update. J. Bras. Pneumol. 2021, 47, e20210129. [Google Scholar] [CrossRef]
- Krug, L.M.; Kindler, H.L.; Calvert, H.; Manegold, C.; Tsao, A.S.; Fennell, D.; Öhman, R.; Plummer, R.; Eberhardt, W.E.E.; Fukuoka, K.; et al. Vorinostat in Patients with Advanced Malignant Pleural Mesothelioma Who Have Progressed on Previous Chemotherapy (VANTAGE-014): A Phase 3, Double-Blind, Randomised, Placebo-Controlled Trial. Lancet Oncol. 2015, 16, 447–456. [Google Scholar] [CrossRef]
- Aceto, N.; Bertino, P.; Barbone, D.; Tassi, G.; Manzo, L.; Porta, C.; Mutti, L.; Gaudino, G. Taurolidine and Oxidative Stress: A Rationale for Local Treatment of Mesothelioma. Eur. Respir. J. 2009, 34, 1399–1407. [Google Scholar] [CrossRef]
- Stankova, J.; Lawrance, A.; Rozen, R. Methylenetetrahydrofolate Reductase (MTHFR): A Novel Target for Cancer Therapy. Curr. Pharm. Des. 2008, 14, 1143–1150. [Google Scholar] [CrossRef]
- Benedetti, S.; Nuvoli, B.; Catalani, S.; Galati, R. Reactive Oxygen Species a Double-Edged Sword for Mesothelioma. Oncotarget 2015, 6, 16848–16865. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Pellizzari Tregno, F.; Sau, A.; Pastore, A.; Palumbo, C.; Alama, A.; Cicconi, R.; Federici, G.; Caccuri, A.M. Glutathione S-Transferase P1-1 as a Target for Mesothelioma Treatment. Cancer Sci. 2013, 104, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Gharib, A.F.; Alaa Eldeen, M.; Khalifa, A.S.; Elsawy, W.H.; Eed, E.M.; Askary, A.E.; Eid, R.A.; Soltan, M.A.; Raafat, N. Assessment of Glutathione Peroxidase-1 (GPX1) Gene Expression as a Specific Diagnostic and Prognostic Biomarker in Malignant Pleural Mesothelioma. Diagnostics 2021, 11, 2285. [Google Scholar] [CrossRef]
- You, B.R.; Park, W.H. Auranofin Induces Mesothelioma Cell Death through Oxidative Stress and GSH Depletion. Oncol. Rep. 2016, 35, 546–551. [Google Scholar] [CrossRef]
- Johnson, F.D.; Ferrarone, J.; Liu, A.; Brandstädter, C.; Munuganti, R.; Farnsworth, D.A.; Lu, D.; Luu, J.; Sihota, T.; Jansen, S.; et al. Characterization of a Small Molecule Inhibitor of Disulfide Reductases That Induces Oxidative Stress and Lethality in Lung Cancer Cells. Cell Rep. 2022, 38, 110343. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, H.; Lu, J.; Holmgren, A. Glutathione and Glutaredoxin Act as a Backup of Human Thioredoxin Reductase 1 to Reduce Thioredoxin 1 Preventing Cell Death by Aurothioglucose. J. Biol. Chem. 2012, 287, 38210–38219. [Google Scholar] [CrossRef]
- Nowak, A.K.; Brosseau, S.; Cook, A.; Zalcman, G. Antiangiogeneic Strategies in Mesothelioma. Front. Oncol. 2020, 10, 126. [Google Scholar] [CrossRef]
- Fukushima, T.; Wakatsuki, Y.; Kobayashi, T.; Sonehara, K.; Tateishi, K.; Yamamoto, M.; Masubuchi, T.; Yoshiike, F.; Hirai, K.; Hachiya, T.; et al. Phase II Study of Cisplatin/Pemetrexed Combined with Bevacizumab Followed by Pemetrexed/Bevacizumab Maintenance Therapy in Patients with EGFR-Wild Advanced Non-Squamous Non-Small Cell Lung Cancer. Cancer Chemother. Pharmacol. 2018, 81, 1043–1050. [Google Scholar] [CrossRef]
- Saito, T.; Miyoshi, E.; Sasai, K.; Nakano, N.; Eguchi, H.; Honke, K.; Taniguchi, N. A Secreted Type of Β1,6-N-Acetylglucosaminyltransferase V (GnT-V) Induces Tumor Angiogenesis without Mediation of Glycosylation. J. Biol. Chem. 2002, 277, 17002–17008. [Google Scholar] [CrossRef] [PubMed]
- Janson, V.; Johansson, A.; Grankvist, K. Resistance to Caspase-8 and -9 Fragments in a Malignant Pleural Mesothelioma Cell Line with Acquired Cisplatin-Resistance. Cell Death Dis. 2010, 1, e78. [Google Scholar] [CrossRef]
- Soini, Y.; Kahlos, K.; Sormunen, R.; Säily, M.; Mäntymaa, P.; Koistinen, P.; Pääkkö, P.; Kinnula, V. Activation and Relocalization of Caspase 3 during the Apoptotic Cascade of Human Mesothelioma Cells. Apmis Acta Pathol. Microbiol. Immunol. Scand. 2005, 113, 426–435. [Google Scholar] [CrossRef]
- Yang, H.; Bocchetta, M.; Kroczynska, B.; Elmishad, A.G.; Chen, Y.; Liu, Z.; Bubici, C.; Mossman, B.T.; Pass, H.I.; Testa, J.R.; et al. TNF-Alpha Inhibits Asbestos-Induced Cytotoxicity via a NF-KappaB-Dependent Pathway, a Possible Mechanism for Asbestos-Induced Oncogenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 10397–10402. [Google Scholar] [CrossRef]
- Pietrofesa, R.A.; Velalopoulou, A.; Albelda, S.M.; Christofidou-Solomidou, M. Asbestos Induces Oxidative Stress and Activation of Nrf2 Signaling in Murine Macrophages: Chemopreventive Role of the Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605). Int. J. Mol. Sci. 2016, 17, 322. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, E.; Pérez-Hernández, N.; Muriel, P.; Pérez-Álvarez, V.; Shibayama, M.; Tsutsumi, V. The Thalidomide Analog 3-Phthalimido-3-(3,4-Dimethoxyphenyl)-Propanoic Acid Improves the Biliary Cirrhosis in the Rat. Exp. Toxicol. Pathol. 2009, 61, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Su, S.-S.; Zheng, G.-Q.; Liu, Y.-G.; Chen, Y.-F.; Song, Z.-W.; Yu, S.-J.; Sun, N.-N.; Yang, Y.-X. Malignant Peritoneum Mesothelioma with Hepatic Involvement: A Single Institution Experience in 5 Patients and Review of the Literature. Gastroenterol. Res. Pract. 2016, 2016, 6242149. [Google Scholar] [CrossRef]
- Sun, Y.; Giacalone, N.J.; Lu, B. Terameprocol (Tetra-O-Methyl Nordihydroguaiaretic Acid), an Inhibitor of Sp1-Mediated Survivin Transcription, Induces Radiosensitization in Non-Small Cell Lung Carcinoma. J. Thorac. Oncol. 2011, 6, 8–14. [Google Scholar] [CrossRef]
- Kim, K.W.; Mutter, R.W.; Willey, C.D.; Subhawong, T.K.; Shinohara, E.T.; Albert, J.M.; Ling, G.; Cao, C.; Gi, Y.J.; Lu, B. Inhibition of Survivin and Aurora B Kinase Sensitizes Mesothelioma Cells by Enhancing Mitotic Arrests. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1519–1525. [Google Scholar] [CrossRef]
- Zaninetti, R.; Cortese, S.V.; Aprile, S.; Massarotti, A.; Canonico, P.L.; Sorba, G.; Grosa, G.; Genazzani, A.A.; Pirali, T. A Concise Synthesis of Pyrazole Analogues of Combretastatin A1 as Potent Anti-Tubulin Agents. ChemMedChem 2013, 8, 633–643. [Google Scholar] [CrossRef]
- Siemann, D.W.; Mercer, E.; Lepler, S.; Rojiani, A.M. Vascular Targeting Agents Enhance Chemotherapeutic Agent Activities in Solid Tumor Therapy. Int. J. Cancer 2002, 99, 1–6. [Google Scholar] [CrossRef]
- Grisham, R.; Ky, B.; Tewari, K.S.; Chaplin, D.J.; Walker, J. Clinical Trial Experience with CA4P Anticancer. Therapy: Focus on Efficacy, Cardiovascular Adverse Events, and Hypertension Management. Gynecol. Oncol. Res. Pract. 2018, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Cömertpay, S.; Gül, A.; Delibaş, M.; Tekin Turhan, M.S. Investigating the Efficacy of Zingerone on Mesothelioma and the Role of TRPV1 in This Effect. Nutr. Cancer 2022, 74, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.-Y.; Choi, J.-S.; Kim, J.-E.; Park, C.; Jeong, J.-W. Zingerone Suppresses Angiogenesis via Inhibition of Matrix Metalloproteinases during Tumor Development. Oncotarget 2016, 7, 47232–47241. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-M.; Chu, T.-H.; Tsai, K.-W.; Hsieh, S.; Kung, M.-L. Phytochemically Derived Zingerone Nanoparticles Inhibit Cell Proliferation, Invasion and Metastasis in Human Oral Squamous Cell Carcinoma. Biomedicines 2022, 10, 320. [Google Scholar] [CrossRef]
- Pietrofesa, R.A.; Velalopoulou, A.; Arguiri, E.; Menges, C.W.; Testa, J.R.; Hwang, W.-T.; Albelda, S.M.; Christofidou-Solomidou, M. Flaxseed Lignans Enriched in Secoisolariciresinol Diglucoside Prevent Acute Asbestos-Induced Peritoneal Inflammation in Mice. Carcinogenesis 2016, 37, 177–187. [Google Scholar] [CrossRef]
- Pietrofesa, R.A.; Chatterjee, S.; Kadariya, Y.; Testa, J.R.; Albelda, S.M.; Christofidou-Solomidou, M. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Prevents Asbestos-Induced Inflammation and Genotoxic Cell Damage in Human Mesothelial Cells. Int. J. Mol. Sci. 2022, 23, 10085. [Google Scholar] [CrossRef]
- Chen, J.; Saggar, J.K.; Corey, P.; Thompson, L.U. Flaxseed and Pure Secoisolariciresinol Diglucoside, but Not Flaxseed Hull, Reduce Human Breast Tumor Growth (MCF-7) in Athymic Mice. J. Nutr. 2009, 139, 2061–2066. [Google Scholar] [CrossRef]
- Munoz, J.; Wheler, J.J.; Kurzrock, R. Androgen Receptors beyond Prostate Cancer: An Old Marker as a New Target. Oncotarget 2015, 6, 592–603. [Google Scholar] [CrossRef]
- Nuvoli, B.; Sacconi, A.; Cortese, G.; Germoni, S.; Murer, B.; Galati, R. Reduction of Estradiol in Human Malignant Pleural Mesothelioma Tissues May Prevent Tumour Growth, as Implied by in in-Vivo and in-Vitro Models. Oncotarget 2016, 7, 47116–47126. [Google Scholar] [CrossRef]
- Stoppoloni, D.; Salvatori, L.; Biroccio, A.; D’Angelo, C.; Muti, P.; Verdina, A.; Sacchi, A.; Vincenzi, B.; Baldi, A.; Galati, R. Aromatase Inhibitor Exemestane Has Antiproliferative Effects on Human Mesothelioma Cells. J. Thorac. Oncol. 2011, 6, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Pina, M.; Fernandes, R.; Fonseca, D.; Oliveira, C.; Rodrigues, A. A Case Report of Mesothelioma Response to Endocrine Therapy in Synchronous Breast Cancer and Pleural Epithelioid Mesothelioma: A Double Exemestane Effect. Cureus 2022, 14, e31579. [Google Scholar] [CrossRef]
- Letterie, G.S.; Yon, J.L. The Antiestrogen Tamoxifen in the Treatment of Recurrent Benign Cystic Mesothelioma. Gynecol. Oncol. 1998, 70, 131–133. [Google Scholar] [CrossRef]
- Horita, K.; Inase, N.; Miyake, S.; Formby, B.; Toyoda, H.; Yoshizawa, Y. Progesterone Induces Apoptosis in Malignant Mesothelioma Cells. Anticancer Res. 2001, 21, 3871–3874. [Google Scholar] [PubMed]
- Pinton, G.; Manente, A.G.; Daga, A.; Cilli, M.; Rinaldi, M.; Nilsson, S.; Moro, L. Agonist Activation of Estrogen Receptor Beta (ERβ) Sensitizes Malignant Pleural Mesothelioma Cells to Cisplatin Cytotoxicity. Mol. Cancer 2014, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- Manente, A.G.; Valenti, D.; Pinton, G.; Jithesh, P.V.; Daga, A.; Rossi, L.; Gray, S.G.; O’Byrne, K.J.; Fennell, D.A.; Vacca, R.A.; et al. Estrogen Receptor β Activation Impairs Mitochondrial Oxidative Metabolism and Affects Malignant Mesothelioma Cell Growth in Vitro and in Vivo. Oncogenesis 2013, 2, e72. [Google Scholar] [CrossRef]
- Chandra, S.; Gahlot, M.; Choudhary, A.N.; Palai, S.; de Almeida, R.S.; de Vasconcelos, J.E.L.; dos Santos, F.A.V.; de Farias, P.A.M.; Coutinho, H.D.M. Scientific Evidences of Anticancer. Potential of Medicinal Plants. Food Chem. Adv. 2023, 2, 100239. [Google Scholar] [CrossRef]
- Benvenuto, M.; Mattera, R.; Taffera, G.; Giganti, M.; Lido, P.; Masuelli, L.; Modesti, A.; Bei, R. The Potential Protective Effects of Polyphenols in Asbestos-Mediated Inflammation and Carcinogenesis of Mesothelium. Nutrients 2016, 8, 275. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, A.; Hamid, L.; Nisar, N.; Malik, J.A.; Ali, T.; Bader, G.N. Flavonoids as Promising Molecules in the Cancer Therapy: An Insight. Curr. Res. Pharmacol. Drug Discov. 2024, 6, 100167. [Google Scholar] [CrossRef]
- Aggarwal, V.; Tuli, H.S.; Tania, M.; Srivastava, S.; Ritzer, E.E.; Pandey, A.; Aggarwal, D.; Barwal, T.S.; Jain, A.; Kaur, G.; et al. Molecular Mechanisms of Action of Epigallocatechin Gallate in Cancer: Recent Trends and Advancement. Semin. Cancer Biol. 2022, 80, 256–275. [Google Scholar] [CrossRef]
- Satoh, M.; Takemura, Y.; Hamada, H.; Sekido, Y.; Kubota, S. EGCG Induces Human Mesothelioma Cell Death by Inducing Reactive Oxygen Species and Autophagy. Cancer Cell Int. 2013, 13, 19. [Google Scholar] [CrossRef]
- Ranzato, E.; Martinotti, S.; Magnelli, V.; Murer, B.; Biffo, S.; Mutti, L.; Burlando, B. Epigallocatechin-3-Gallate Induces Mesothelioma Cell Death via H2O2−Dependent T-Type Ca2+ Channel Opening. J. Cell Mol. Med. 2012, 16, 2667–2678. [Google Scholar] [CrossRef] [PubMed]
- Raber, M.N.; Newman, R.A.; Newman, B.M.; Gaver, R.C.; Schacter, L.P. Phase I Trial and Clinical Pharmacology of Elsamitrucin. Cancer Res. 1992, 52, 1406–1410. [Google Scholar] [PubMed]
- Verweij, J.; Wanders, J.; Nielsen, A.L.; Pavlidis, N.; Calabresi, F.; Huinink, W.t.; Bruntsch, U.; Piccart, M.; Franklin, H.; Kaye, S.B. Phase II Studies of Elsamitrucin in Breast Cancer, Colorectal Cancer, Non-Small Cell Lung Cancer and Ovarian Cancer. Ann. Oncol. 1994, 5, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Mohrbacher, A.; Sanani, S.; Irwin, D.; Espina, B.M.; Madrid, C.; Lenaz, L.; Rosales, R. A Multi-Center, Open-Label, Non-Randomized Phase II Study of Elsamitrucin (SPI-28090) in Patients with Relapsed or Refractory Non-Hodgkin’s Lymphoma (NHL). Blood 2004, 104, 4592. [Google Scholar] [CrossRef]
- Nahar, L.; Talukdar, A.D.; Nath, D.; Nath, S.; Mehan, A.; Ismail, F.M.D.; Sarker, S.D. Naturally Occurring Calanolides: Occurrence, Biosynthesis, and Pharmacological Properties Including Therapeutic Potential. Molecules 2020, 25, 4983. [Google Scholar] [CrossRef]
- Liu, F.-Y.; Ding, D.-N.; Wang, Y.-R.; Liu, S.-X.; Peng, C.; Shen, F.; Zhu, X.-Y.; Li, C.; Tang, L.-P.; Han, F.-J. Icariin as a Potential Anticancer. Agent: A Review of Its Biological Effects on Various Cancers. Front. Pharmacol. 2023, 14, 1216363. [Google Scholar] [CrossRef]
- Falchook, G.S.; Bendell, J.C.; Ulahannan, S.V.; Sen, S.; Vilimas, R.; Kriksciukaite, K.; Mei, L.; Jerkovic, G.; Sarapa, N.; Bilodeau, M.; et al. Pen-866, a Miniature Drug Conjugate of a Heat Shock Protein 90 (HSP90) Ligand Linked to SN38 for Patients with Advanced Solid Malignancies: Phase I and Expansion Cohort Results. J. Clin. Oncol. 2020, 38, 3515. [Google Scholar] [CrossRef]
- Ren, X.; Li, T.; Zhang, W.; Yang, X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022, 11, 2556. [Google Scholar] [CrossRef]
- Zhou, J.; Gelot, C.; Pantelidou, C.; Li, A.; Yücel, H.; Davis, R.E.; Färkkilä, A.; Kochupurakkal, B.; Syed, A.; Shapiro, G.I.; et al. A First-in-Class Polymerase Theta Inhibitor Selectively Targets Homologous-Recombination-Deficient Tumors. Nat. Cancer 2021, 2, 598–610. [Google Scholar] [CrossRef]
- Burlison, J.A.; Blagg, B.S.J. Synthesis and Evaluation of Coumermycin A1 Analogues That Inhibit the Hsp90 Protein Folding Machinery. Org. Lett. 2006, 8, 4855–4858. [Google Scholar] [CrossRef] [PubMed]
- Subastri, A.; Suyavaran, A.; Preedia Babu, E.; Nithyananthan, S.; Barathidasan, R.; Thirunavukkarasu, C. Troxerutin with Copper Generates Oxidative Stress in Cancer Cells: Its Possible Chemotherapeutic Mechanism against Hepatocellular Carcinoma. J. Cell Physiol. 2018, 233, 1775–1790. [Google Scholar] [CrossRef]
- Panat, N.A.; Singh, B.G.; Maurya, D.K.; Sandur, S.K.; Ghaskadbi, S.S. Troxerutin, a Natural Flavonoid Binds to DNA Minor Groove and Enhances Cancer Cell Killing in Response to Radiation. Chem. Biol. Interact. 2016, 251, 34–44. [Google Scholar] [CrossRef]
- Yu, J.; Huang, X.; Cao, M.; Qian, L.; Shao, L.; Chinnathambi, A.; Alharbi, S.A.; Jian, J. Anticancer. Effect of Troxerutin in Human Non-Small-Cell Lung Cancer Cell A549 and Inhibition of Tumor Formation in BALB/c Nude Mice. J. Environ. Pathol. Toxicol. Oncol. 2021, 40, 25–35. [Google Scholar] [CrossRef]
- ben Sghaier, M.; Pagano, A.; Mousslim, M.; Ammari, Y.; Kovacic, H.; Luis, J. Rutin Inhibits Proliferation, Attenuates Superoxide Production and Decreases Adhesion and Migration of Human Cancerous Cells. Biomed. Pharmacother. 2016, 84, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Huwait, E.; Mobashir, M. Potential and Therapeutic Roles of Diosmin in Human Diseases. Biomedicines 2022, 10, 1076. [Google Scholar] [CrossRef] [PubMed]
- Doumat, G.; Daher, D.; Zerdan, M.B.; Nasra, N.; Bahmad, H.F.; Recine, M.; Poppiti, R. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems. Curr. Oncol. 2023, 30, 704–719. [Google Scholar] [CrossRef]
- Matthews, M.M.; Thomas, J.M.; Zheng, Y.; Tran, K.; Phelps, K.J.; Scott, A.I.; Havel, J.; Fisher, A.J.; Beal, P.A. Structures of Human ADAR2 Bound to DsRNA Reveal Base-Flipping Mechanism and Basis for Site Selectivity. Nat. Struct. Mol. Biol. 2016, 23, 433. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of Protein Models with Three-Dimensional Profiles. Nature 1992, 356, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M. Stereochemical Quality of Protein Structure Coordinates. Proteins 1992, 12, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Raval, A.; Piana, S.; Eastwood, M.P.; Dror, R.O.; Shaw, D.E. Refinement of Protein Structure Homology Models via Long, All-atom Molecular Dynamics Simulations. Proteins Struct. Funct. Bioinform. 2012, 80, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful New Tools for Exploring 3D Structures of Biological Macromolecules for Basic and Applied Research and Education in Fundamental Biology, Biomedicine, Biotechnology, Bioengineering and Energy Sciences. Nucleic Acids Res. 2021, 49, D451. [Google Scholar] [CrossRef]
- Wright, A.; Vissel, B. The Essential Role of AMPA Receptor GluR2 Subunit RNA Editing in the Normal and Diseased Brain. Front. Mol. Neurosci. 2012, 5, 34. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Sterling, T.; Irwin, J.J. ZINC 15–Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Chen, C.Y.C. TCM Database@Taiwan: The World’s Largest Traditional Chinese Medicine Database for Drug Screening In Silico. PLoS ONE 2011, 6, e15939. [Google Scholar] [CrossRef]
- Broni, E.; Ashley, C.; Velazquez, M.; Khan, S.; Striegel, A.; Sakyi, P.O.; Peracha, S.; Bebla, K.; Sodhi, M.; Kwofie, S.K.; et al. In Silico Discovery of Potential Inhibitors Targeting the RNA Binding Loop of ADAR2 and 5-HT2CR from Traditional Chinese Natural Compounds. Int. J. Mol. Sci. 2023, 24, 12612. [Google Scholar] [CrossRef]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Antechamber, An Accessory Software Package For Molecular Mechanical Calculations. J. Chem. Inf. Comput. Sci. 2001, 222, 2001. [Google Scholar]
- Cheatham, T.E.; Case, D.A. Twenty-five Years of Nucleic Acid Simulations. Biopolymers 2013, 99, 969–977. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An Overview of the Amber Biomolecular Simulation Package. WIREs Comput. Mol. Sci. 2013, 3, 198–210. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Klekota, J.; Roth, F.P. Chemical Substructures That Enrich for Biological Activity. Bioinformatics 2008, 24, 2518–2525. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Kwofie, S.K.; Broni, E.; Yunus, F.U.; Nsoh, J.; Adoboe, D.; Miller, W.A.; Wilson, M.D. Molecular Docking Simulation Studies Identifies Potential Natural Product Derived-Antiwolbachial Compounds as Filaricides against Onchocerciasis. Biomedicines 2021, 9, 1682. [Google Scholar] [CrossRef]
- Colovos, C.; Yeates, T.O. Verification of Protein Structures: Patterns of Nonbonded Atomic Interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
Compound | MW (g/mol) | logP o/w | TPSA (Å2) | BBB Permeant | GI Absorption | ESOL Solubility Class | Lipinski’s Rule of Five | Veber’s Rule |
---|---|---|---|---|---|---|---|---|
ZINC000085594944 | 566.62 | 3.89 | 103.65 | No | High | Moderately | 1 | 0 |
ZINC000085633079 | 556.56 | 5.46 | 102.64 | No | Low | Poor | 1 | 0 |
ZINC000003203078 | 376.36 | 3.58 | 67.13 | Yes | High | Moderately | 0 | 0 |
ZINC000034512861 | 468.75 | 7.64 | 26.3 | No | Low | Poor | 1 | 0 |
ZINC000085594687 | 488.57 | 4.75 | 104.65 | No | High | Poor | 0 | 0 |
ZINC000095909822 | 446.66 | 4.59 | 74.6 | No | High | Moderately | 0 | 0 |
ZINC000085571242 | 488.66 | 4.59 | 52.6 | No | High | Moderately | 0 | 0 |
ZINC000085597263 | 594.73 | 5.84 | 114.68 | No | Low | Poor | 1 | 0 |
ZINC000044305204 | 582.64 | 5.05 | 136.68 | No | Low | Poor | 1 | 0 |
ZINC000014649947 | 426.5 | 5.55 | 69.92 | No | High | Poor | 1 | 0 |
ZINC000059589174 | 486.52 | 2.96 | 82.39 | No | High | Moderately | 0 | 0 |
ZINC000102943567 | 404.46 | 4.29 | 72.83 | No | High | Moderately | 0 | 0 |
ZINC000085633008 | 494.53 | 5.3 | 100.13 | No | Low | Poor | 0 | 0 |
ZINC000014690589 | 488.57 | 5.78 | 100.13 | No | Low | Poor | 0 | 0 |
ZINC000042807177 | 494.62 | 4.15 | 89.9 | No | High | Moderately | 0 | 0 |
ZINC000085545309 | 374.6 | 7.04 | 0 | No | Low | Poor | 1 | 0 |
ZINC000085504706 | 550.86 | 7.04 | 17.07 | No | Low | Poor | 1 | 0 |
ZINC000085571230 | 526.69 | 7.04 | 64.96 | No | Low | Poor | 1 | 0 |
ZINC000085532515 | 533.7 | 5.05 | 68.23 | No | High | Poor | 1 | 0 |
ZINC000070454124 | 564.58 | 3.83 | 119.34 | No | High | Moderately | 1 | 0 |
Compound | Docking Score | Mutagenicity | Tumorigenicity | Irritant | Reproductive Effects |
---|---|---|---|---|---|
ZINC000085594944 | −8.0 | none | none | none | high |
ZINC000085633079 | −7.9 | none | none | none | high |
ZINC000003203078 | −7.8 | none | none | none | high |
ZINC000034512861 | −7.8 | none | none | none | none |
ZINC000085597263 | −7.7 | none | none | none | none |
ZINC000095909822 | −7.7 | none | none | none | none |
ZINC000014649947 | −7.6 | none | none | none | none |
ZINC000044305204 | −7.6 | none | none | none | none |
ZINC000070454124 | −7.5 | none | none | none | none |
ZINC000085532515 | −7.5 | none | none | none | none |
ZINC000085633008 | −7.5 | none | none | none | none |
ZINC000014690589 | −7.5 | none | none | none | high |
ZINC000059589174 | −7.5 | none | none | none | high |
ZINC000085504706 | −7.5 | none | none | none | high |
Compound | Van der Waals | Electrostatic Energy | Polar Solvation Energy | SASA Energy | Binding Energy |
---|---|---|---|---|---|
ZINC000003203078 | −71.024 ± 2.193 | 58.918 ± 7.742 | 53.296 ± 4.731 | −8.056 ± 0.244 | 33.283 ± 4.599 |
ZINC000014649947 | −126.183 ± 1.619 | −39.692 ± 1.800 | 88.947 ± 2.380 | −14.967 ± 0.160 | −91.971 ± 2.264 |
ZINC000034512861 | −129.574 ± 1.785 | −1.690 ± 0.843 | 28.921 ± 2.291 | −14.823 ± 0.188 | −117.174 ± 1.991 |
ZINC000044305204 | 2515.289 ± 8.456 | −31.312 ± 1.848 | 163.827 ± 3.099 | −19.991 ± 0.145 | 2647.642 ± 8.562 |
ZINC000070454124 | −131.220 ± 2.212 | −57.121 ± 2.408 | 113.517 ± 3.493 | −14.962 ± 0.213 | −89.821 ± 2.037 |
ZINC000085532515 | −85.434 ± 3.705 | 174.586 ± 6.171 | 5.388 ± 4.444 | −10.714 ± 0.469 | 83.573 ± 3.013 |
ZINC000085594944 | −121.825 ± 1.886 | −33.966 ± 1.737 | 73.172 ± 3.440 | −14.313 ± 0.196 | −96.990 ± 3.440 |
ZINC000085597263 | −145.826 ± 3.688 | −40.985 ± 3.693 | 87.528 ± 4.872 | −16.874 ± 0.358 | −115.873 ± 3.902 |
ZINC000085633008 | −110.509 ± 2.538 | −17.199 ± 1.943 | 58.462 ± 2.771 | −12.723 ± 0.280 | −82.006 ± 2.708 |
ZINC000085633079 | −176.138 ± 1.693 | −55.252 ± 1.604 | 112.556 ± 2.150 | −17.904 ± 0.128 | −136.667 ± 1.779 |
ZINC000095909822 | −95.872 ± 2.116 | −27.994 ± 2.310 | 70.238 ± 3.996 | −12.336 ± 0.228 | −66.133 ± 2.909 |
Compound | Van der Waals | Electrostatic Energy | Polar Solvation Energy | SASA Energy | Binding Energy |
---|---|---|---|---|---|
dsRBD2-GluR-2 | −383.563 ± 0.493 | −8050.498 ± 4.241 | 1463.402 ± 2.193 | −40.719 ± 0.042 | −7011.460 ± 3.184 |
ZINC000003203078 | −123.797 ± 1.756 | 1377.269 ± 8.971 | 137.191 ± 5.025 | −12.923 ± 0.187 | 1377.422 ± 7.839 |
ZINC000014649947 | −155.167 ± 1.519 | −56.383 ± 2.260 | 180.212 ± 3.513 | −17.598 ± 0.185 | −48.847 ± 2.416 |
ZINC000034512861 | −34.158 ± 4.893 | −2.938 ± 0.881 | 38.383 ± 9.318 | −4.058 ± 0.560 | −3.185 ± 9.674 |
ZINC000070454124 | 4877.875 ± 11.057 | −81.655 ± 1.459 | 264.516 ± 2.752 | −26.988 ± 0.178 | 5034.415 ± 11.006 |
ZINC000085594944 | 1889.835 ± 7.258 | −67.286 ± 2.597 | 213.467 ± 4.104 | −24.662 ± 0.253 | 2011.413 ± 7.829 |
ZINC000085597263 | −230.554 ± 2.862 | −35.540 ± 3.200 | 109.973 ± 3.586 | −21.324 ± 0.211 | −177.129 ± 3.290 |
ZINC000085633008 | 1822.482 ± 6632 | −17.916 ± 1.836 | 153.393 ± 2.634 | −21.525 ± 0.118 | 1936.952 ± 7.130 |
ZINC000085633079 | −253.380 ± 3.058 | −32.051 ± 3.911 | 161.361 ± 3.202 | −24.988 ± 0.168 | −148.844 ± 3.463 |
ZINC000095909822 | 1491.132 ± 6.301 | −31.553 ± 1.759 | 109.608 ± 3.027 | −16.087 ± 3.027 | 1552.963 ± 6.200 |
Compound | Hydrophobic Bonds | Hydrogen Bonds (Bond Length Å) |
---|---|---|
ZINC000014649947 | Ala213, Lys208, and Lys209 | Asn162 (2.35) |
ZINC000034512861 | Asn162, Val164, Lys208, Lys209, and Lys212 | |
ZINC000085633079 | Val164, Met165, Glu169, Lys208, Lys209, and Lys212 | Asn162 (2.71), Asn168 (2.66) |
ZINC000085597263 | Val164, Met165, Lys208, Lys209, and Lys212 | Asn162 (3.14), Asn168 (2.00) |
ZINC000085594944 | Asn162, Val164, Met165, Asn168, Lys208, Lys209, and Lys212 | |
ZINC000085633008 | Asn162, Val164, Met165, Asn168, Asn207, Lys208, Lys209, Leu210, and Ala213 | |
ZINC000070454124 | Val164, Asn168, Pro172, Lys209, Leu210, and Lys212 | Asn162 (2.81) |
ZINC000095909822 | Val164, Met165, Asn168, Lys208, Lys209, and Lys212 |
Post 1.1 µs MD Simulations ADAR2 | ||||||
---|---|---|---|---|---|---|
Model | ERRAT | VERIFY3D | PROCHECK | |||
Favored | Allowed | Generously Allowed | Disallowed | |||
Model 1 | 82.4348 | 84.59% | 79.6% | 18.9% | 1.3% | 0.2% |
Model 2 | 81.5972 | 79.32% | 83.0% | 15.2% | 1.5% | 0.3% |
Model 3 | 78.5211 | 82.88% | 79.6% | 18.7% | 1.2% | 0.5% |
Model 4 | 79.2096 | 80.46% | 80.9% | 16.9% | 1.7% | 0.5 |
Model 5 | 84.0555 | 78.03% | 84.8% | 13.7% | 1.3% | 0.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashley, C.N.; Broni, E.; Pena-Martinez, M.; Wood, C.M.; Kwofie, S.K.; Miller, W.A., III. Computer-Aided Discovery of Natural Compounds Targeting the ADAR2 dsRBD2-RNA Interface and Computational Modeling of Full-Length ADAR2 Protein Structure. Int. J. Mol. Sci. 2025, 26, 4075. https://doi.org/10.3390/ijms26094075
Ashley CN, Broni E, Pena-Martinez M, Wood CM, Kwofie SK, Miller WA III. Computer-Aided Discovery of Natural Compounds Targeting the ADAR2 dsRBD2-RNA Interface and Computational Modeling of Full-Length ADAR2 Protein Structure. International Journal of Molecular Sciences. 2025; 26(9):4075. https://doi.org/10.3390/ijms26094075
Chicago/Turabian StyleAshley, Carolyn N., Emmanuel Broni, Michelle Pena-Martinez, Chanyah M. Wood, Samuel K. Kwofie, and Whelton A. Miller, III. 2025. "Computer-Aided Discovery of Natural Compounds Targeting the ADAR2 dsRBD2-RNA Interface and Computational Modeling of Full-Length ADAR2 Protein Structure" International Journal of Molecular Sciences 26, no. 9: 4075. https://doi.org/10.3390/ijms26094075
APA StyleAshley, C. N., Broni, E., Pena-Martinez, M., Wood, C. M., Kwofie, S. K., & Miller, W. A., III. (2025). Computer-Aided Discovery of Natural Compounds Targeting the ADAR2 dsRBD2-RNA Interface and Computational Modeling of Full-Length ADAR2 Protein Structure. International Journal of Molecular Sciences, 26(9), 4075. https://doi.org/10.3390/ijms26094075