Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection
Abstract
:1. Introduction
2. Epigenetic Alterations in Colorectal Polyps and Cancer
3. Non-Coding RNAs
3.1. miRNA
3.2. lncRNA
4. Biomarker Role of Epigenetic Alterations
4.1. miRNAs as Potential Biomarkers for Polyp and CRC Detection
4.2. lncRNAs as Potential Biomarkers for Polyp and CRC Detection
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DNA | deoxyribonucleic acid |
RNA | ribonucleic acid |
ncRNA | non-coding RNA |
miRNA | microRNA |
lncRNA | long non-coding RNA |
mRNA | messenger RNA |
circRNA | circular RNA |
snRNA | small nuclear RNA |
snoRNA | small nucleolar RNA |
CRC | colorectal cancer |
APC | adenomatous polyposis coli |
CIN | chromosomal instability pathway |
CIMP | CpG island methylator phenotype |
MSI | microsatellite instability |
PDCD4 | programmed cell death protein 4 |
TGF- β | transforming growth factor-β |
PI3K | phosphoinositide 3-kinase |
VEGF | vascular endothelial growth factor |
CMS | consensus molecular subtypes |
EGFR | epidermal growth factor receptor |
References
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2021, 22, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Cronin, O.; Bourke, M.J. Endoscopic Management of Large Non-Pedunculated Colorectal Polyps. Cancers 2023, 15, 3805. [Google Scholar] [CrossRef] [PubMed]
- Sievers, C.K.; Grady, W.M.; Halberg, R.B.; Pickhardt, P.J. New Insights into the Earliest Stages of Colorectal Tumorigenesis. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Siskova, A.; Cervena, K.; Kral, J.; Hucl, T.; Vodicka, P.; Vymetalkova, V. Colorectal Adenomas-Genetics and Searching for New Molecular Screening Biomarkers. Int. J. Mol. Sci. 2020, 21, 3260. [Google Scholar] [CrossRef]
- Goel, A.; Boland, C.R. Epigenetics of Colorectal Cancer. Gastroenterology 2012, 143, 1442–1460.e1. [Google Scholar] [CrossRef]
- Jung, G.; Hernández-Illán, E.; Moreira, L.; Balaguer, F.; Goel, A. Epigenetics of Colorectal Cancer: Biomarker and Therapeutic Potential. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 111–130. [Google Scholar] [CrossRef]
- Grady, W.M.; Yu, M.; Markowitz, S.D. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology 2021, 160, 690–709. [Google Scholar] [CrossRef]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The Consensus Molecular Subtypes of Colorectal Cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Komor, M.A.; Bosch, L.J.; Bounova, G.; Bolijn, A.S.; Delis-van Diemen, P.M.; Rausch, C.; Hoogstrate, Y.; Stubbs, A.P.; de Jong, M.; Jenster, G.; et al. Consensus Molecular Subtype Classification of Colorectal Adenomas. J. Pathol. 2018, 246, 266–276. [Google Scholar] [CrossRef]
- Carethers, J.M.; Jung, B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology 2015, 149, 1177–1190.e3. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Petko, Z.; Dzieciatkowski, S.; Lin, L.; Ghiassi, M.; Stain, S.; Chapman, W.C.; Washington, M.K.; Willis, J.; Markowitz, S.D.; et al. CpG Island Methylation of Genes Accumulates during the Adenoma Progression Step of the Multistep Pathogenesis of Colorectal Cancer. Genes Chromosomes Cancer 2006, 45, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Akao, Y.; Kumazaki, M.; Shinohara, H.; Sugito, N.; Kuranaga, Y.; Tsujino, T.; Yoshikawa, Y.; Kitade, Y. Impairment of K-Ras Signaling Networks and Increased Efficacy of Epidermal Growth Factor Receptor Inhibitors by a Novel Synthetic miR-143. Cancer Sci. 2018, 109, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, N.; Dong, Y.; Li, S.; Xu, L.; Li, X.; Li, Y.; Li, Z.; Ng, S.S.; Sung, J.J.; et al. miR-34a-5p Suppresses Colorectal Cancer Metastasis and Predicts Recurrence in Patients with Stage II/III Colorectal Cancer. Oncogene 2015, 34, 4142–4152. [Google Scholar] [CrossRef] [PubMed]
- Hiyoshi, Y.; Schetter, A.J.; Okayama, H.; Inamura, K.; Anami, K.; Nguyen, G.H.; Horikawa, I.; Hawkes, J.E.; Bowman, E.D.; Leung, S.Y.; et al. Increased microRNA-34b and -34c Predominantly Expressed in Stromal Tissues Is Associated with Poor Prognosis in Human Colon Cancer. PLoS ONE 2015, 10, e0124899. [Google Scholar] [CrossRef]
- Wu, Y.; Song, Y.; Xiong, Y.; Wang, X.; Xu, K.; Han, B.; Bai, Y.; Li, L.; Zhang, Y.; Zhou, L. MicroRNA-21 (Mir-21) Promotes Cell Growth and Invasion by Repressing Tumor Suppressor PTEN in Colorectal Cancer. Cell Physiol. Biochem. 2017, 43, 945–958. [Google Scholar] [CrossRef]
- Sun, D.; Yu, F.; Ma, Y.; Zhao, R.; Chen, X.; Zhu, J.; Zhang, C.-Y.; Chen, J.; Zhang, J. MicroRNA-31 Activates the RAS Pathway and Functions as an Oncogenic MicroRNA in Human Colorectal Cancer by Repressing RAS P21 GTPase Activating Protein 1 (RASA1). J. Biol. Chem. 2013, 288, 9508–9518. [Google Scholar] [CrossRef]
- Hombach, S.; Kretz, M. Non-Coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef]
- Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int. J. Mol. Sci. 2020, 21, 5311. [Google Scholar] [CrossRef]
- Lee, R.; Feinbaum, R.; Ambros, V. A Short History of a Short RNA. Cell 2004, 116, S89–S92. [Google Scholar] [CrossRef]
- Kita, Y.; Yonemori, K.; Osako, Y.; Baba, K.; Mori, S.; Maemura, K.; Natsugoe, S. Noncoding RNA and Colorectal Cancer: Its Epigenetic Role. J. Hum. Genet. 2017, 62, 41–47. [Google Scholar] [CrossRef]
- Kanaan, Z.; Roberts, H.; Eichenberger, M.R.; Billeter, A.; Ocheretner, G.; Pan, J.; Rai, S.N.; Jorden, J.; Williford, A.; Galandiuk, S. A Plasma microRNA Panel for Detection of Colorectal Adenomas: A Step toward More Precise Screening for Colorectal Cancer. Ann. Surg. 2013, 258, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.; Horimatsu, T.; Okugawa, Y.; Nishida, N.; Honjo, H.; Ida, H.; Kou, T.; Kusaka, T.; Sasaki, Y.; Yagi, M.; et al. Serum miR-21, miR-29a, and miR-125b Are Promising Biomarkers for the Early Detection of Colorectal Neoplasia. Clin. Cancer Res. 2015, 21, 4234–4242. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; He, M.; Zhang, M.; Sun, Q.; Zeng, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Meng, X.; et al. The Role of Non-Coding RNAs in Colorectal Cancer, with a Focus on Its Autophagy. Pharmacol. Ther. 2021, 226, 107868. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.; le Sage, C.; Diosdado, B.; van der Waal, M.; Oude Vrielink, J.A.F.; Bolijn, A.; Meijer, G.A.; Agami, R. Regulation of the Adenomatous Polyposis Coli Gene by the miR-135 Family in Colorectal Cancer. Cancer Res. 2008, 68, 5795–5802. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Xu, B.; Wang, B.; Wang, Z.; Liang, Y.; Zhou, J.; Hu, J.; Jiang, B. Epigenetic Silencing of miR-126 Contributes to Tumor Invasion and Angiogenesis in Colorectal Cancer. Oncol. Rep. 2013, 30, 1976–1984. [Google Scholar] [CrossRef]
- Fiala, O.; Pitule, P.; Hosek, P.; Liska, V.; Sorejs, O.; Bruha, J.; Vycital, O.; Buchler, T.; Poprach, A.; Topolcan, O.; et al. The Association of miR-126-3p, miR-126-5p and miR-664-3p Expression Profiles with Outcomes of Patients with Metastatic Colorectal Cancer Treated with Bevacizumab. Tumour. Biol. 2017, 39, 1010428317709283. [Google Scholar] [CrossRef]
- Kerachian, M.A.; Azghandi, M. Identification of Long Non-Coding RNA Using Single Nucleotide Epimutation Analysis: A Novel Gene Discovery Approach. Cancer Cell Int. 2022, 22, 337. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, G.; Shi, X.; Wang, Y.; Wen, X.; Zhang, L.; Guo, X. The Emerging Role of Long Non-Coding RNAs in Esophageal Cancer: Functions in Tumorigenesis and Clinical Implications. Front. Pharmacol. 2022, 13, 885075. [Google Scholar] [CrossRef]
- Sung, W.J.; Hong, J. Targeting lncRNAs of Colorectal Cancers with Natural Products. Front. Pharmacol. 2022, 13, 1050032. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Wang, X.-L.; Tang, H.-M.; Jiang, T.; Chen, J.; Lu, S.; Qiu, G.-Q.; Peng, Z.-H.; Yan, D.-W. Long Non-Coding RNA HOTAIR Is a Powerful Predictor of Metastasis and Poor Prognosis and Is Associated with Epithelial-Mesenchymal Transition in Colon Cancer. Oncol. Rep. 2014, 32, 395–402. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Huang, S.; He, K.; Zhao, M.; Lin, H.; Li, D.; Qian, J.; Zhou, C.; Chen, Y.; et al. Long Non-Coding RNA Growth Arrest Specific Transcript 5 Acts as a Tumour Suppressor in Colorectal Cancer by Inhibiting Interleukin-10 and Vascular Endothelial Growth Factor Expression. Oncotarget 2017, 8, 13690–13702. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.J.; Lee, J.K.; Boland, C.R.; Dominitz, J.A.; Giardiello, F.M.; Johnson, D.A.; Kaltenbach, T.; Lieberman, D.; Levin, T.R.; Rex, D.K. Recommendations on Fecal Immunochemical Testing to Screen for Colorectal Neoplasia: A Consensus Statement by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2017, 152, 1217–1237.e3. [Google Scholar] [CrossRef] [PubMed]
- Bovell, L.; Shanmugam, C.; Katkoori, V.R.; Zhang, B.; Vogtmann, E.; Grizzle, W.E.; Manne, U. miRNAs Are Stable in Colorectal Cancer Archival Tissue Blocks. Front. Biosci. (Elite Ed.) 2012, 4, 1937–1940. [Google Scholar] [CrossRef] [PubMed]
- Di Leva, G.; Croce, C.M. miRNA Profiling of Cancer. Curr. Opin. Genet. Dev. 2013, 23, 3–11. [Google Scholar] [CrossRef]
- Moridikia, A.; Mirzaei, H.; Sahebkar, A.; Salimian, J. MicroRNAs: Potential Candidates for Diagnosis and Treatment of Colorectal Cancer. J. Cell. Physiol. 2018, 233, 901–913. [Google Scholar] [CrossRef]
- Dragomir, M.P.; Kopetz, S.; Ajani, J.A.; Calin, G.A. Non-Coding RNAs in GI Cancers: From Cancer Hallmarks to Clinical Utility. Gut 2020, 69, 748–763. [Google Scholar] [CrossRef]
- Toiyama, Y.; Takahashi, M.; Hur, K.; Nagasaka, T.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum miR-21 as a Diagnostic and Prognostic Biomarker in Colorectal Cancer. J. Natl. Cancer Inst. 2013, 105, 849–859. [Google Scholar] [CrossRef]
- Uratani, R.; Toiyama, Y.; Kitajima, T.; Kawamura, M.; Hiro, J.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; et al. Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. PLoS ONE 2016, 11, e0160722. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma microRNAs Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer. Int. J. Cancer 2010, 127, 118–126. [Google Scholar] [CrossRef]
- Sugai, T.; Sugimoto, R.; Eizuka, M.; Osakabe, M.; Yamada, S.; Yanagawa, N.; Matsumoto, T.; Suzuki, H. Comprehensive Analysis of microRNA Expression During the Progression of Colorectal Tumors. Dig. Dis. Sci. 2023, 68, 813–823. [Google Scholar] [CrossRef]
- Pu, X.; Huang, G.; Guo, H.; Guo, C.; Li, H.; Ye, S.; Ling, S.; Jiang, L.; Tian, Y.; Lin, T. Circulating miR-221 Directly Amplified from Plasma Is a Potential Diagnostic and Prognostic Marker of Colorectal Cancer and Is Correlated with P53 Expression. J. Gastroenterol. Hepatol. 2010, 25, 1674–1680. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-H.; Zhou, Z.-G.; Chen, R.; Wang, M.-J.; Zhou, B.; Li, Y.; Sun, X.-F. Serum miR-21 and miR-92a as Biomarkers in the Diagnosis and Prognosis of Colorectal Cancer. Tumour. Biol. 2013, 34, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Meng, L.; Fan, Z.; Liu, B.; Pei, Y.; Zhao, Z. Expression of plasma miR-106a in colorectal cancer and its clinical significance. Nan Fang Yi Ke Da Xue Xue Bao 2014, 34, 354–357. [Google Scholar] [PubMed]
- Brunet Vega, A.; Pericay, C.; Moya, I.; Ferrer, A.; Dotor, E.; Pisa, A.; Casalots, À.; Serra-Aracil, X.; Oliva, J.-C.; Ruiz, A.; et al. microRNA Expression Profile in Stage III Colorectal Cancer: Circulating miR-18a and miR-29a as Promising Biomarkers. Oncol. Rep. 2013, 30, 320–326. [Google Scholar] [CrossRef]
- Yuan, D.; Li, K.; Zhu, K.; Yan, R.; Dang, C. Plasma miR-183 Predicts Recurrence and Prognosis in Patients with Colorectal Cancer. Cancer Biol. Ther. 2015, 16, 268–275. [Google Scholar] [CrossRef]
- Du, M.; Liu, S.; Gu, D.; Wang, Q.; Zhu, L.; Kang, M.; Shi, D.; Chu, H.; Tong, N.; Chen, J.; et al. Clinical Potential Role of Circulating microRNAs in Early Diagnosis of Colorectal Cancer Patients. Carcinogenesis 2014, 35, 2723–2730. [Google Scholar] [CrossRef]
- Zheng, G.; Du, L.; Yang, X.; Zhang, X.; Wang, L.; Yang, Y.; Li, J.; Wang, C. Serum microRNA Panel as Biomarkers for Early Diagnosis of Colorectal Adenocarcinoma. Br. J. Cancer 2014, 111, 1985–1992. [Google Scholar] [CrossRef]
- Wu, C.W.; Ng, S.C.; Dong, Y.; Tian, L.; Ng, S.S.M.; Leung, W.W.; Law, W.T.; Yau, T.O.; Chan, F.K.L.; Sung, J.J.Y.; et al. Identification of microRNA-135b in Stool as a Potential Noninvasive Biomarker for Colorectal Cancer and Adenoma. Clin. Cancer Res. 2014, 20, 2994–3002. [Google Scholar] [CrossRef]
- Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; et al. Circulating Exosomal microRNAs as Biomarkers of Colon Cancer. PLoS ONE 2014, 9, e92921. [Google Scholar] [CrossRef]
- Chang, P.-Y.; Chen, C.-C.; Chang, Y.-S.; Tsai, W.-S.; You, J.-F.; Lin, G.-P.; Chen, T.-W.; Chen, J.-S.; Chan, E.-C. MicroRNA-223 and microRNA-92a in Stool and Plasma Samples Act as Complementary Biomarkers to Increase Colorectal Cancer Detection. Oncotarget 2016, 7, 10663–10675. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, A.; Li, J.; Fu, J.; Wang, G.; Yang, Y.; Cui, L.; Sun, J. Fecal miR-29a and miR-224 as the Noninvasive Biomarkers for Colorectal Cancer. Cancer Biomark 2016, 16, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Wang, C.; Deng, T.; Liang, H.; Wang, Y.; Huang, D.; Fan, Q.; Wang, X.; Ning, T.; et al. Serum miRNA Expression Profile as a Prognostic Biomarker of Stage II/III Colorectal Adenocarcinoma. Sci. Rep. 2015, 5, 12921. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-M.; Zhao, R.-H.; Li, S.-T.; Xie, C.-X.; Jiang, H.-H.; Ding, W.-J.; Du, P.; Chen, W.; Yang, M.; Cui, L. Down-Regulation of Fecal miR-143 and miR-145 as Potential Markers for Colorectal Cancer. Saudi Med. J. 2012, 33, 24–29. [Google Scholar] [PubMed]
- Wang, Y.-N.; Chen, Z.-H.; Chen, W.-C. Novel Circulating microRNAs Expression Profile in Colon Cancer: A Pilot Study. Eur. J. Med. Res. 2017, 22, 51. [Google Scholar] [CrossRef]
- NONCODE. Available online: http://www.noncode.org/ (accessed on 27 December 2023).
- Svoboda, M.; Slyskova, J.; Schneiderova, M.; Makovicky, P.; Bielik, L.; Levy, M.; Lipska, L.; Hemmelova, B.; Kala, Z.; Protivankova, M.; et al. HOTAIR Long Non-Coding RNA Is a Negative Prognostic Factor Not Only in Primary Tumors, but Also in the Blood of Colorectal Cancer Patients. Carcinogenesis 2014, 35, 1510–1515. [Google Scholar] [CrossRef]
- Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. CCAT1 and CCAT2 Long Noncoding RNAs, Located within the 8q.24.21 “Gene Desert”, Serve as Important Prognostic Biomarkers in Colorectal Cancer. Ann. Oncol. 2017, 28, 1882–1888. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.-X.; Ma, B.; Wang, J.-J.; Sun, J.-X.; Chen, X.-W.; Zhao, J.-H.; Yang, Y.-C.; Wang, Z.-N. Regulatory Roles of Non-Coding RNAs in Colorectal Cancer. Int. J. Mol. Sci. 2015, 16, 19886–19919. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, C.; Chang, Y.; Zhang, Z.; Hu, Y.; Zhang, F.; Lu, Y.; Zheng, L.; Zhang, W.; Li, X.; et al. Long Non-Coding RNA CASC11 Interacts with hnRNP-K and Activates the WNT/β-Catenin Pathway to Promote Growth and Metastasis in Colorectal Cancer. Cancer Lett. 2016, 376, 62–73. [Google Scholar] [CrossRef]
- Javed, Z.; Khan, K.; Sadia, H.; Raza, S.; Salehi, B.; Sharifi-Rad, J.; Cho, W.C. LncRNA & Wnt Signaling in Colorectal Cancer. Cancer Cell Int. 2020, 20, 326. [Google Scholar] [CrossRef]
- Cătană, C.-S.; Pichler, M.; Giannelli, G.; Mader, R.M.; Berindan-Neagoe, I. Non-Coding RNAs, the Trojan Horse in Two-Way Communication between Tumor and Stroma in Colorectal and Hepatocellular Carcinoma. Oncotarget 2017, 8, 29519–29534. [Google Scholar] [CrossRef]
- Liang, W.; Zou, Y.; Qin, F.; Chen, J.; Xu, J.; Huang, S.; Chen, J.; Dai, S. sTLR4/MD-2 Complex Inhibits Colorectal Cancer Migration and Invasiveness in Vitro and in Vivo by lncRNA H19 down-Regulation. Acta Biochim. Biophys. Sin. (Shanghai) 2017, 49, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, J.; Wang, H.; Tian, Y.; Xie, M.; He, X.; Ji, H.; Ma, Z.; Hui, B.; Wang, K.; et al. Long Noncoding RNA CRNDE Promotes Colorectal Cancer Cell Proliferation via Epigenetically Silencing DUSP5/CDKN1A Expression. Cell Death Dis. 2017, 8, e2997. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal Long Noncoding RNA CRNDE-h as a Novel Serum-Based Biomarker for Diagnosis and Prognosis of Colorectal Cancer. Oncotarget 2016, 7, 85551–85563. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.-T.; Shi, D.-B.; Wang, Y.-W.; Li, X.-X.; Xu, Y.; Tripathi, P.; Gu, W.-L.; Cai, G.-X.; Cai, S.-J. High Expression of lncRNA MALAT1 Suggests a Biomarker of Poor Prognosis in Colorectal Cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 3174–3181. [Google Scholar]
- Yin, D.; He, X.; Zhang, E.; Kong, R.; De, W.; Zhang, Z. Long Noncoding RNA GAS5 Affects Cell Proliferation and Predicts a Poor Prognosis in Patients with Colorectal Cancer. Med. Oncol. 2014, 31, 253. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Y.; Wang, J.; Jie, D.; Yun, T.; Li, W.; Yan, L.; Wang, K.; Feng, J. Downregulated Long Noncoding RNA BANCR Promotes the Proliferation of Colorectal Cancer Cells via Downregualtion of P21 Expression. PLoS ONE 2015, 10, e0122679. [Google Scholar] [CrossRef]
- Guo, K.; Yao, J.; Yu, Q.; Li, Z.; Huang, H.; Cheng, J.; Wang, Z.; Zhu, Y. The Expression Pattern of Long Non-Coding RNA PVT1 in Tumor Tissues and in Extracellular Vesicles of Colorectal Cancer Correlates with Cancer Progression. Tumour. Biol. 2017, 39, 1010428317699122. [Google Scholar] [CrossRef]
- Chen, D.-L.; Chen, L.-Z.; Lu, Y.-X.; Zhang, D.-S.; Zeng, Z.-L.; Pan, Z.-Z.; Huang, P.; Wang, F.-H.; Li, Y.-H.; Ju, H.-Q.; et al. Long Noncoding RNA XIST Expedites Metastasis and Modulates Epithelial-Mesenchymal Transition in Colorectal Cancer. Cell Death Dis. 2017, 8, e3011. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Y.; Yuan, H.; Zhang, T.; Sui, H.; Wei, X.; Liu, L.; Huang, P.; Zhang, W.; Bai, Y. UCA1, a Long Non-Coding RNA up-Regulated in Colorectal Cancer Influences Cell Proliferation, Apoptosis and Cell Cycle Distribution. Pathology 2014, 46, 396–401. [Google Scholar] [CrossRef]
- Yin, D.-D.; Liu, Z.-J.; Zhang, E.; Kong, R.; Zhang, Z.-H.; Guo, R.-H. Decreased Expression of Long Noncoding RNA MEG3 Affects Cell Proliferation and Predicts a Poor Prognosis in Patients with Colorectal Cancer. Tumour. Biol. 2015, 36, 4851–4859. [Google Scholar] [CrossRef]
- Yan, B.; Gu, W.; Yang, Z.; Gu, Z.; Yue, X.; Gu, Q.; Liu, L. Downregulation of a Long Noncoding RNA-ncRuPAR Contributes to Tumor Inhibition in Colorectal Cancer. Tumour. Biol. 2014, 35, 11329–11335. [Google Scholar] [CrossRef]
- Qi, P.; Xu, M.-D.; Ni, S.-J.; Shen, X.-H.; Wei, P.; Huang, D.; Tan, C.; Sheng, W.-Q.; Zhou, X.-Y.; Du, X. Down-Regulation of ncRAN, a Long Non-Coding RNA, Contributes to Colorectal Cancer Cell Migration and Invasion and Predicts Poor Overall Survival for Colorectal Cancer Patients. Mol. Carcinog. 2015, 54, 742–750. [Google Scholar] [CrossRef] [PubMed]
Micro-RNA | Up/Down Regulated | Test | Samples | % Sensitivity | % Specificity | References |
---|---|---|---|---|---|---|
miR-221 | Up | CRC | Blood | 86 | 41 | [41] |
miR-21 | Up | CRC | Blood | 82.8 | 90.6 | [37] |
miR-21 | Up | Adenoma | Blood | 73.1–76.8 | 68.1–81.1 | [37,38,42] |
miR-106a | Up | CRC | Blood | 62.3 | 68.2 | [43] |
miR-18a | Up | CRC | Blood | / | / | [44] |
miR-29a | Up | CRC | Blood | / | / | [44] |
miR-29a | Up | Adenoma | Blood | 62.2–72 | 66–84.7 | [38,39] |
miR-183 | Up | CRC | Blood | 73.7 | 88.5 | [45] |
miR-92a | Up | CRC | Blood | [42,46,47] | ||
miR-92a | Up | Adenoma | Blood | 64.9–65.4 | 78.7–81.4 | [38,39,42] |
miR-135b | Up | Adenoma | Stool | 65 | 45 | [48] |
miR-135b | Up | CRC | Stool | 78 | 68 | [48] |
miR-223 | Up | CRC | Blood | 46 | / | [49,50] |
miR-223 | Up | CRC | Stool | 60–76.5 | 71–96.4 | [50,51] |
miR-143/miR-145 | Down | CRC | Blood | / | / | [52] |
miR-143/miR-145 | Down | CRC | Stool | / | / | [53] |
miR-31 | Up | CRC | Blood | / | / | [54] |
Panels | % Sensitivity | %Specificity | References |
---|---|---|---|
miR-19a-3p, miR-223-3p, miR-92a-3p, and miR-442a | / | / | [47] |
miR-532-3p, miR-331, miR-195, miR-17, miR-142-3p, miR-15b, miR-532, and miR652 | 88 | 64 | [21] |
miR-29a and miR-92a | 73 | 80 | [39] |
miR-21 and miR-92a | 70 | 70 | [42] |
lncRNA | Up/Down Regulated (Role) | Samples | Comment | References |
---|---|---|---|---|
H19 | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. normal tissue | [62] |
HOTAIR | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. normal tissue | [50] |
HOTAIR | Up (oncogene) | Blood | Upregulated at an early stage CRC | [50] |
CCAT1 | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. normal tissue | [57] |
CCAT1 | Up (oncogene) | Blood | Upregulated in CRC vs. healthy controls | [50] |
CRNDE | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. normal tissue | [63] |
CRNDE | Up (oncogene) | Blood | Upregulated in serum exosomes of CRC vs. healthy controls | [64] |
MALAT1 | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. healthy controls | [65] |
GAS5 | Down (tumour suppressor) | Tissue (CRC) | Downregulated in CRC vs. normal tissue | [66] |
CCAT2 | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. normal tissue | [57] |
BANCR | Downregulated? | Tissue (CRC) | Downregulated in CRC vs. normal tissue | [67] |
PVT1 | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. normal tissue | [68] |
XIST | Up (oncogene) | Tissue (CRC) | Upregulated in CRC vs. normal tissue | [69] |
UCA1 | Up (oncogene) | Tissue (CRC) | / | [70] |
MEG3 | Down (tumour suppressor) | Tissue (CRC) | / | [71] |
ncRAN | Down (tumour suppressor) | Tissue (CRC) | / | [72] |
ncRuPaR | Down (tumour suppressor) | Tissue (CRC) | / | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plut, S.; Gavric, A.; Glavač, D. Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection. Int. J. Mol. Sci. 2025, 26, 4106. https://doi.org/10.3390/ijms26094106
Plut S, Gavric A, Glavač D. Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection. International Journal of Molecular Sciences. 2025; 26(9):4106. https://doi.org/10.3390/ijms26094106
Chicago/Turabian StylePlut, Samo, Aleksandar Gavric, and Damjan Glavač. 2025. "Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection" International Journal of Molecular Sciences 26, no. 9: 4106. https://doi.org/10.3390/ijms26094106
APA StylePlut, S., Gavric, A., & Glavač, D. (2025). Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection. International Journal of Molecular Sciences, 26(9), 4106. https://doi.org/10.3390/ijms26094106