Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study
Abstract
:1. Introduction
2. Methods
2.1. Data Set
2.2. Full Search Multiple Linear Regression Method
2.3. Selection of Outliers
3. Results and Discussion
3.1. Derivation of QSAR
Outliers | None | 15 | 5,15 | 5,14,15 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No of Terms | r2a | sb | Fpc | r2a | sb | Fpc | r2a | sb | Fpc | r2a | sb | Fpc | |
1 | 0.23 | 0.82 | 9.49 | 0.25 | 0.82 | 10.15 | 0.26 | 0.83 | 10.25 | 0.26 | 0.84 | 9.95 | |
2 | 0.37 | 0.75 | 6.59 | 0.40 | 0.75 | 7.02 | 0.41 | 0.75 | 7.14 | 0.42 | 0.76 | 7.07 | |
3 | 0.49 | 0.69 | 6.69 | 0.50 | 0.69 | 5.76 | 0.52 | 0.69 | 5.82 | 0.53 | 0.70 | 6.09 | |
4 | 0.54 | 0.66 | 3.24 | 0.60 | 0.63 | 6.61 | 0.62 | 0.62 | 7.56 | 0.64 | 0.62 | 7.68 | |
5 | 0.61 | 0.63 | 4.29 | 0.75 | 0.51 | 16.09 | 0.82 | 0.44 | 27.16 | 0.86 | 0.40 | 36.01 | |
6 | 0.69 | 0.57 | 6.60 | 0.78 | 0.49 | 3.15 | 0.84 | 0.42 | 3.31 | 0.87 | 0.38 | 3.67 |
No. of terms | Outlier | r2a | sb | Fc |
---|---|---|---|---|
1 | 14 | 0.33 | 0.77 | 14.50 |
2 | 14 | 0.42 | 0.73 | 10.63 |
3 | 14 | 0.54 | 0.66 | 11.08 |
4 | 14 | 0.63 | 0.60 | 11.54 |
5 | 15 | 0.75 | 0.49 | 15.80 |
n = 31, r2 = 0.820, r2cv = 0.716, s = 0.440, F = 22.805
No | Substituents(R) | Obsd | Pred | Resd | L | B1 | B3 | FPSA3 | ρ |
---|---|---|---|---|---|---|---|---|---|
1a | H | -1.14 | -1.10 | -0.04 | 1.70 | 1.20 | 1.20 | 0.11 | 1.29 |
1b | COCH2-Ph | 0.19 | -0.50 | 0.69 | 8.51 | 2.13 | 4.50 | 0.09 | 1.22 |
3 | CH2-Ph | -1.63 | -1.28 | -0.35 | 4.61 | 1.70 | 5.98 | 0.09 | 1.24 |
4 | COCH2-(4-CH3O-Ph) | -1.16 | -0.86 | -0.29 | 8.86 | 1.90 | 6.61 | 0.09 | 1.22 |
5 | COCH2-(4-NH2-3-I-Ph) | -1.69 | -3.37 | 1.67 | 8.44 | 1.91 | 6.34 | 0.09 | 1.49 |
6 | COCH2-(4-NH2-Ph) | -0.55 | -0.65 | 0.10 | 9.38 | 1.94 | 4.66 | 0.10 | 1.22 |
7 | COCH2-(3-I-Ph) | -2.95 | -3.15 | 0.20 | 8.50 | 2.05 | 5.94 | 0.08 | 1.49 |
8 | COCH2-(4-I-Ph) | -1.80 | -1.51 | -0.29 | 9.93 | 1.91 | 4.83 | 0.08 | 1.50 |
9 | COCH2-(3-Cl-Ph) | -1.51 | -1.50 | -0.01 | 8.50 | 2.10 | 5.54 | 0.09 | 1.27 |
10 | (R)-COCH(CH3)(Ph) | 0.44 | -0.25 | 0.69 | 7.55 | 1.81 | 5.27 | 0.09 | 1.21 |
11 | (S)-COCH(CH3)(Ph) | 0.33 | -0.11 | 0.44 | 7.55 | 1.81 | 5.27 | 0.09 | 1.20 |
12 | COCH(Ph)2 | 0.23 | 0.14 | 0.09 | 8.31 | 2.02 | 5.18 | 0.08 | 1.19 |
13 | COC(CH3)(Ph)2 | -2.29 | -1.60 | -0.69 | 8.20 | 2.32 | 6.41 | 0.09 | 1.18 |
14 | COCH2CH2-Ph | -1.37 | -0.47 | -0.91 | 6.81 | 1.82 | 5.59 | 0.09 | 1.21 |
15 | COCH=CH-Ph (trans ) | -1.86 | 1.12 | -2.98 | 8.17 | 1.72 | 3.68 | 0.09 | 1.22 |
16 | D-COCH(CH3)(NH-Boca) | -1.67 | -2.01 | 0.35 | 9.65 | 2.19 | 6.07 | 0.10 | 1.20 |
17 | L-COCH(CH3)(NH-Boca) | -1.92 | -1.82 | -0.10 | 9.65 | 2.19 | 6.07 | 0.10 | 1.20 |
18 | CO(CH2)2-NH-Boca | -0.83 | -1.13 | 0.30 | 10.15 | 1.91 | 6.37 | 0.11 | 1.20 |
19 | CO(CH2)3-NH-Boca | -1.52 | -1.61 | 0.09 | 10.00 | 1.87 | 8.44 | 0.11 | 1.18 |
20 | CO(CH2)4-NH-Boca | -1.34 | -1.78 | 0.44 | 10.51 | 1.88 | 9.38 | 0.11 | 1.17 |
21 | CO(CH2)5-NH-Boca | -1.53 | -0.66 | -0.87 | 13.23 | 1.89 | 8.77 | 0.11 | 1.16 |
22 | CO(CH2)6-NH-Boca | -1.73 | -1.81 | 0.08 | 12.34 | 1.88 | 11.00 | 0.11 | 1.14 |
23 | D-COCH(CH3)(NH2) | -3.06 | -3.11 | 0.05 | 4.94 | 2.05 | 3.88 | 0.10 | 1.24 |
24 | L-COCH(CH3)(NH2) | -3.08 | -2.93 | -0.15 | 4.94 | 2.05 | 3.88 | 0.10 | 1.25 |
25 | CO(CH2)2-NH2 | -2.94 | -2.59 | -0.35 | 5.55 | 1.89 | 3.49 | 0.11 | 1.24 |
26 | CO(CH2)3-NH2 | -1.91 | -2.44 | 0.54 | 7.10 | 1.90 | 3.84 | 0.11 | 1.22 |
27 | CO(CH2)4-NH2 | -1.76 | -1.85 | 0.08 | 8.28 | 1.89 | 4.58 | 0.11 | 1.20 |
28 | CO(CH2)5-NH2 | -2.33 | -1.88 | -0.45 | 8.94 | 1.89 | 5.69 | 0.11 | 1.18 |
29 | CO(CH2)6-NH2 | -2.54 | -2.37 | -0.17 | 8.08 | 1.89 | 6.28 | 0.12 | 1.17 |
30 | CO(CH2)4-COOCH2Ph | -1.65 | -2.02 | 0.37 | 7.93 | 1.89 | 9.80 | 0.10 | 1.19 |
31 | CO(CH2)2-COOCH3 | -1.74 | -1.66 | -0.08 | 7.45 | 2.07 | 4.21 | 0.10 | 1.25 |
32 | CO(CH2)6-COOCH3 | -1.77 | -1.92 | 0.15 | 7.95 | 1.73 | 9.46 | 0.10 | 1.20 |
33 | CO(CH2)3-COOH | -1.91 | -1.98 | 0.07 | 6.62 | 1.88 | 3.86 | 0.10 | 1.25 |
L | B1 | B3 | FPSA3 | ρ | p Ki | |
---|---|---|---|---|---|---|
L | 1.00 | |||||
B1 | 0.41 | 1.00 | ||||
B3 | 0.70 | 0.12 | 1.00 | |||
FPSA3 | 0.11 | -0.25 | 0.12 | 1.00 | ||
ρ | -0.21 | -0.02 | -0.38 | -0.53 | 1.00 | |
pKi | 0.17 | -0.19 | 0.02 | -0.33 | -0.23 | 1.00 |
3.2. QSAR Analysis
Group | Molecule | QSAR equation | r2 |
---|---|---|---|
1 | 1b, 4 and 6-10 | 7.28 - 6.49ρ | 0.70 |
2 | 1b and 11-14 | 7.45 - 1.44B3 | 0.70 |
3 | 16-22 | 5.92 - 2.97B1- 0.19B3 | 0.79 |
4 | 23-29 | -4.23 + 0.25L | 0.61 |
5 | 30-33 | 0.44 - 22.36FPSA3 | 0.80 |
4. Conclusions
Acknowledgements
References and Notes
- Iismaa, T. P.; Biden, T. J.; Shine, J. G Protein-Coupled Receptors Springer-Verlag: Heidelberg, 1995.
- Olah, M. E.; Stiles, G. L. Adenosine Receptor Subtypes: Characterization and Therapeutic Regulation. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 581–606. [Google Scholar] [CrossRef]
- Downey, J. M.; Cohen, M. V.; Ytrehus, K.; Liu, Y. Cellular mechanisms in ischemic preconditioning: The role of adenosine and protein kinase C. Ann. NY Acad. Sci. 1994, 723, 82–98. [Google Scholar] [CrossRef]
- De Zwart, M.; Kourounakis, A.; Kooijman, H.; Spek, A. L.; Link, R. 5'-N-substituted carboxamidoadenosines as agonists for adenosine receptors. J. Med. Chem. 1999, 42, 1384–1392. [Google Scholar] [CrossRef]
- Hannon, J. P.; Pfannkuche, H. J.; Fozard, J. R. A role for mast cells in adenosine A3 receptor-mediated hypotension in the rat. Br. J. Pharmacol. 1995, 115, 945–952. [Google Scholar] [CrossRef]
- Ramkumar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem. 1993, 268, 16887–16890. [Google Scholar]
- Jacobson, K. A.; Kim, H. O.; Siddiqi, S. M.; Olah, M. E.; Stiles, G.; von Lubitz, D. K. J. E. A3-adenosine receptors: Design of selective ligands and therapeutic prospects. Drugs of the Future 1995, 20, 689–699. [Google Scholar]
- Ji, X. D.; Melman, N.; Jacobson, K. A. Interactions of flavonoids and other phytochemicals with adenosine receptors. J. Med. Chem. 1996, 39, 781–788. [Google Scholar] [CrossRef]
- Moro, S.; van Rhee, A. M.; Sanders, L. H.; Jacobson, K. A. Flavonoid derivatives as adenosine receptor antagonists: A comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. J. Med. Chem. 1998, 41, 46–52. [Google Scholar] [CrossRef]
- Li, A. H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X. D.; Jacobson, K. A. Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J. Med. Chem. 1999, 42, 706–721. [Google Scholar] [CrossRef]
- Van Rhee, M.; Jiang, J. L.; Melman, N.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: Selectivity for A3receptors. J. Med. Chem. 1996, 39, 2980–2989. [Google Scholar] [CrossRef]
- Jiang, J. L.; van Rhee, A. M.; Melman, N.; Ji, X. D.; Jacobson, K. A. 6-phenyl-1,4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J. Med. Chem. 1996, 39, 4667–4675. [Google Scholar] [CrossRef]
- Kim, Y. C.; Ji, X. D.; Jacobson, K. A. Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype. J. Med. Chem. 1996, 39, 4142–4148. [Google Scholar] [CrossRef]
- Kim, Y. C.; de Zwart, M.; Chang, L.; Moro, S.; Kunzel, J. K.; Von, F. D.; Melman, N.; Ijzerman, A. P.; Jacobson, K. A. Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) having high potency at the human A(2B) and A3 receptor subtypes. J. Med. Chem. 1998, 41, 2835–2845. [Google Scholar] [CrossRef]
- Jacobson, K. A.; Park, K. S.; Jiang, J. L.; Kim, Y. C.; Olah, M. E.; Stiles, G. L.; Ji, X. D. Pharmacological characterization of novel A3 adenosine receptor-selective antagonists. Neuropharmacology 1997, 36, 1157–1165. [Google Scholar] [CrossRef]
- Moro, S.; Li, A. H.; Jacobson, K. A. Molecular modeling studies of human A3 adenosine antagonists: Structural homology and receptor docking. J. Chem. Inf. Comput. Sci. 1998, 38, 1239–1248. [Google Scholar] [CrossRef]
- Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86, 1616–1630. [Google Scholar] [CrossRef]
- Halgren, T. A. Representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 1992, 114, 7827–7843. [Google Scholar]
- Halgren, T. A.; Nachbar, R. B. Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J. Comp. Chem. 1996, 19, 587–615. [Google Scholar]
- Rappé, A. K.; Goddard, W. A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991, 95, 3358–3363. [Google Scholar] [CrossRef]
- Kubinyi, H. QSAR: Hansch Analysis and Related Approaches; VCH: WeinHeim, 1993; Methods and principles in medicinal chemistry; Vol. 1. [Google Scholar]
- Verloop, A.; Hoogenstraaten, W.; Tipker, J. Drug Design. Ariens, E.J., Ed.; Academic Press: New York, 1976; Vol. VII. [Google Scholar]
- Verloop, A. The STERIMOL Approach to Drug Design. Marcel Dekker: New York, 1987. [Google Scholar]
- Stanton, T.; Jurs, P. C. Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem. 1990, 62, 2323–2329. [Google Scholar] [CrossRef]
© 2006 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Kim, D.; Hong, S.-I.; Lee, D.-S. Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study. Int. J. Mol. Sci. 2006, 7, 485-496. https://doi.org/10.3390/i7110485
Kim D, Hong S-I, Lee D-S. Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study. International Journal of Molecular Sciences. 2006; 7(11):485-496. https://doi.org/10.3390/i7110485
Chicago/Turabian StyleKim, Dooil, Suk-In Hong, and Dae-Sil Lee. 2006. "Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study" International Journal of Molecular Sciences 7, no. 11: 485-496. https://doi.org/10.3390/i7110485
APA StyleKim, D., Hong, S. -I., & Lee, D. -S. (2006). Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study. International Journal of Molecular Sciences, 7(11), 485-496. https://doi.org/10.3390/i7110485