1-(2-Hydroxyethyl)imidazolidine-2-thione
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis and Characterization
3.3. X-ray Crystallography
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKay, A.F.; Vavasour, G.R. Cyclic thioureas. Can. J. Chem. 1954, 32, 59–62. [Google Scholar] [CrossRef]
- Michels, J.G. 1-(2’-hydroxyethyl)-3-(5-nitrofurfurylideneamino) imidazolidine-2-thione. U.S. Patent DE 1117591, 23 November 1961. [Google Scholar]
- Michels, J.G. 1-(2-hydroxyethyl)-3-amino-2-imidazolidine-thione. U.S. Patent 3,115,499, 24 December 1963. [Google Scholar]
- Qin, Y.; Flajslik, K.; Lefebvre, M. Indium Electroplating Compositions Containing 2-imidazolidinethione Compounds. U.S. Patent 20180016690, 18 January 2018. [Google Scholar]
- Doubina, N.V.; Rigsby, M.A.; Reid, J.D. Chemistry Additives and Process for Cobalt Film Electrodeposition. U.S. Patent 20160273117, 22 September 2016. [Google Scholar]
- Cui, Z.; Duan, Y.; Shen, M.; Li, C.; Liu, X.; Tang, Y. Method for preparing corrosion inhibitor for inhibiting H2S/CO2 corrosion. CN 102268677 A, 7 December 2011. [Google Scholar]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1-_2-hydroxyethyl_imidazolidine-2-thione#section=Top (accessed on 21 November 2018).
- Thorn, G.D. 1-Alkyl-2-imidazolidinethiones. Can. J. Chem. 1955, 33, 1278–1279. [Google Scholar] [CrossRef]
- Lo, C.-P. Some 1-alkyl-2-imidazolidinethiones. J. Am. Chem. Soc. 1955, 24, 6667. [Google Scholar] [CrossRef]
- Tiekink, E.R.T. Tin dithiocarbamates: Applications and structures. Appl. Organomet. Chem. 2008, 22, 533–550. [Google Scholar] [CrossRef]
- Jamaludin, N.S.; Goh, Z.-J.; Cheah, Y.K.; Ang, K.-P.; Sim, J.H.; Khoo, C.H.; Fairuz, Z.A.; Halim, S.N.B.A.; Ng, S.W.; Seng, H.-L.; et al. Phosphanegold(I) dithiocarbamates, R3PAu[SC(=S)N(iPr)CH2CH2OH] for R = Ph, Cy and Et: Role of phosphane-bound R substituents upon in vitro cytotoxicity against MCF-7R breast cancer cells and cell death pathways. Eur. J. Med. Chem. 2013, 67, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Ishak, D.H.A.; Ooi, K.K.; Ang, K.P.; Akim, A.M.; Cheah, Y.K.; Nordin, N.; Halim, S.N.B.A.; Seng, H.-L.; Tiekink, E.R.T. A bismuth diethyldithiocarbamate compound promotes apoptosis in HepG2 carcinoma, cell cycle arrest and inhibits cell invasion through modulation of the NF-κB activation pathway. J. Inorg. Biochem. 2014, 130, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.S.; Ooi, K.K.; Ang, K.P.; Akim, A.M.; Cheah, Y.-K.; Halim, S.N.A.; Seng, H.-L.; Tiekink, E.R.T. Molecular mechanisms of apoptosis and cell selectivity of zinc dithiocarbamates functionalized with hydroxyethyl substituents. J. Inorg. Biochem. 2015, 150, 48–62. [Google Scholar] [CrossRef]
- Jamaludin, N.S.; Halim, S.N.A.; Khoo, C.-H.; Chen, B.-J.; See, T.-H.; Sim, J.-H.; Cheah, Y.-K.; Seng, H.-L.; Tiekink, E.R.T. Bis(phosphane)copper(I) and silver(I) dithiocarbamates: Crystallography and anti-microbial assay. Z. Kristallogr. 2016, 231, 341–349. [Google Scholar] [CrossRef]
- Sim, J.-H.; Jamaludin, N.S.; Khoo, C.-H.; Cheah, Y.-K.; Halim, S.N.B.A.; Seng, H.-L.; Tiekink, E.R.T. In vitro antibacterial and time-kill evaluation of phosphanegold(I) dithiocarbamates, R3PAu[S2CN(iPr)CH2CH2OH] for R = Ph, Cy and Et, against a broad range of Gram-positive and Gram-negative bacteria. Gold Bull. 2014, 47, 225–236. [Google Scholar] [CrossRef]
- Chen, B.-J.; Jamaludin, N.S.; Khoo, C.-H.; See, T.-H.; Sim, J.-H.; Cheah, Y.-K.; Halim, S.N.A.; Seng, H.-L.; Tiekink, E.R.T. In vitro antibacterial and time kill evaluation of mononuclear phosphanegold(I) dithiocarbamates. J. Inorg. Biochem. 2016, 163, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Hogarth, G. Metal-dithiocarbamate complexes: Chemistry and biological activity. Mini Rev. Med. Chem. 2012, 12, 1202–1215. [Google Scholar] [CrossRef]
- Tan, Y.S.; Halim, S.N.A.; Tiekink, E.R.T. Crystal structure of 3-(propan-2-yl)-1,3-oxazolidine-2-thione, C6H11NOS. Z. Kristallogr. New Cryst. Struct. 2014, 229, 55–56. [Google Scholar] [CrossRef]
- Karri, R.; Banerjee, M.; Chalana, A.; Jha, K.K.; Roy, G. Activation of the Hg-C bond of methylmercury by [S2]-donor ligands. Inorg. Chem. 2017, 56, 12102–12115. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Karri, R.; Chalana, A.; Rai, R.K.; Rawat, K.S.; Pathak, B.; Roy, G. Protection of endogenous thiols against methylmercury with benzimidazole-based thione by unusual ligand-exchange reactions. Chem. Eur. J. 2017, 23, 5696–5707. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Karri, R.; Chalana, A.; Rai, R.K.; Rawat, K.S.; Pathak, B.; Roy, G. Chemical detoxification of organomercurials. Angew. Chem. Int. Ed. 2015, 54, 9323–9327. [Google Scholar] [CrossRef] [PubMed]
- de Lima, G.M.; Menezes, D.C.; Dos Santos, J.A.F.; Wardell, J.L.; Filgueiras, C.A.L.; Alcântara, A.F.C. Cyclization of N-alkyldithiocarbamates in alkaline media, a counter example of well-known chemistry-an experimental and theoretical study. J. Coord. Chem. 2012, 65, 559–571. [Google Scholar] [CrossRef]
- Foris, A. On NH NMR Chemical Shifts, Part 1. Available online: https://www.researchgate.net/publication/301653644 (accessed on 9 November 2018).
- Foris, A. On Hydrogen Bonding and OH Chemical Shifts. Available online: https://www.researchgate.net/publication/285927747 (accessed on 9 November 2018).
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in hydrogen bonding: Functionality and Graph Set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Chieh, C.; Cheung, S.K. Crystal structure of N,N’-dimethyl-2-imidazolidinethione, a by-product from the reaction of Na2(CH2N(CH3)CS2)2 and HgCl2. Can. J. Chem. 1983, 61, 211–213. [Google Scholar] [CrossRef]
- Liu, C.; Shen, H.-Q.; Chen, M.-W.; Zhou, Y.-G. C2-symmetric hindered “sandwich” chiral N-heterocyclic carbene precursors and their transition metal complexes: Expedient syntheses, structural authentication, and catalytic properties. Organometallics 2018, 37, 3756–3769. [Google Scholar] [CrossRef]
- Faraji, L.; Jadidi, K.; Notash, B. Synthesis of novel chiral bidentate hydroxyalkyl-N-heterocyclic carbene ligands and their application in palladium-catalyzed Mizoroki–Heck couplings and asymmetric addition of diethylzinc to benzaldehyde. Tetrahedron Lett. 2014, 55, 346–350. [Google Scholar] [CrossRef]
- Antonín Klásek, A.; Mrkvička, V.; Lyčka, A.; Ivan Mikšík, I.; Růžička, A. Reaction of 1-substituted 3-aminoquinoline-2,4-diones with isothiocyanates. An easy pathway to generate novel 2-thioxo-1′H-spiro[imidazoline-5,3′-indole]-2,2′-diones. Tetrahedron 2009, 65, 4908–4916. [Google Scholar] [CrossRef]
- Agilent Technologies Inc. Rigaku Oxford Diffraction, CrysAlis PRO; Agilent Technologies Inc.: Santa Clara, CA, USA, 2017. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany, 2006. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.M.; Azizan, A.H.S.; Tiekink, E.R.T. 1-(2-Hydroxyethyl)imidazolidine-2-thione. Molbank 2018, 2018, M1035. https://doi.org/10.3390/M1035
Lee SM, Azizan AHS, Tiekink ERT. 1-(2-Hydroxyethyl)imidazolidine-2-thione. Molbank. 2018; 2018(4):M1035. https://doi.org/10.3390/M1035
Chicago/Turabian StyleLee, See Mun, Ainnul Hamidah Syahadah Azizan, and Edward R. T. Tiekink. 2018. "1-(2-Hydroxyethyl)imidazolidine-2-thione" Molbank 2018, no. 4: M1035. https://doi.org/10.3390/M1035