5-[4-(tert-Butyl)cyclohexylidene]-2-thioxothiazolidin-4-one
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Title Compound 3
2.2. Evaluation of Physicochemical and Drug-like Properties In Silico of Compound 3
2.3. Antimicrobial Activity Evaluation In Vitro of Compound 3
3. Materials and Methods
3.1. General Information and Compound 3 Synthesis
3.2. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, V.K.; Barde, A.; Rattan, S. A short review on synthetic strategies toward glitazone drugs. Synth. Commun. 2021, 51, 57–80. [Google Scholar] [CrossRef]
- Terashima, H.; Hama, K.; Yamamoto, R.; Tsuboshima, M.; Kikkawa, R.; Hatanaka, I.; Shigeta, Y. Effects of a new aldose reductase inhibitor on various tissues in vitro. J. Pharmacol. Exp. Ther. 1984, 229, 226–230. [Google Scholar] [PubMed]
- Unangst, P.C.; Connor, D.T.; Cetenko, W.A.; Sorenson, R.J.; Kostlan, C.R.; Sircar, J.C.; Wright, C.D.; Schrier, D.J.; Dyer, R.D. Synthesis and biological evaluation of 5-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methylene]oxazoles, -thiazoles, and -imidazoles: Novel dual 5-lipoxygenase and cyclooxygenase inhibitors with antiinflammatory activity. J. Med. Chem. 1994, 37, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Bolli, M.H.; Abele, S.; Binkert, C.; Bravo, R.; Buchmann, S.; Bur, D.; Gatfield, J.; Hess, P.; Kohl, C.; Mangold, C.; et al. 2-Imino-thiazolidin-4-one derivatives as potent, orally active S1P1 receptor agonists. J. Med. Chem. 2010, 53, 4198–4211. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Ponesimod: First Approval. Drugs 2021, 81, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Sklyarova, Y.; Fomenko, I.; Lozynska, I.; Lozynskyi, A.; Lesyk, R.; Sklyarov, A. Hydrogen sulfide releasing 2-mercaptoacrylic acid-based derivative possesses cytoprotective activity in a small intestine of rats with medication-induced enteropathy. Sci. Pharm. 2017, 85, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golota, S.; Sydorenko, I.; Surma, R.; Karpenko, O.; Gzella, A.; Lesyk, R. Facile one-pot synthesis of 5-aryl/heterylidene-2-(2-hydroxyethyl- and 3-hydroxypropylamino)-thiazol-4-ones via catalytic aminolysis. Synth. Commun. 2017, 47, 1071–1076. [Google Scholar] [CrossRef]
- Mishchenko, M.; Shtrygol, S.; Lozynskyi, A.; Khomyak, S.; Novikov, V.; Karpenko, O.; Holota, S.; Lesyk, R. Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Sci. Pharm. 2021, 89, 22. [Google Scholar] [CrossRef]
- Holota, S.; Komykhov, S.; Sysak, S.; Gzella, A.; Cherkas, A.; Lesyk, R. Synthesis, Characterization and In Vitro Evaluation of Novel 5-Ene-thiazolo[3,2-b][1,2,4]triazole-6(5H)-ones as Possible Anticancer Agents. Molecules 2021, 26, 1162. [Google Scholar] [CrossRef] [PubMed]
- Brown, F.C.; Bradsher, C.K.; McCallum, S.G.; Potter, M. Rhodanine derivatives of ketones. J. Org. Chem. 1950, 15, 174–176. [Google Scholar] [CrossRef]
- Barreiro, E.; Casas, J.S.; Couce, M.D.; Sánchez, A.; Sordo, J.; Varela, J.M.; Vázquez-López, E.M. The Influence of 5-Substituents on the Supramolecular Structures of Rhodanine Derivatives. Cryst. Growth Des. 2007, 7, 1964–1973. [Google Scholar] [CrossRef]
- Metwally, N.H.; Abdalla, M.A.; Mosselhi, M.A.; El-Desoky, E.A. Synthesis and antimicrobial activity of some new N-glycosides of 2-thioxo-4-thiazolidinone derivatives. Carbohydr. Res. 2010, 345, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Khodaei, M.M.; Eshghi, A. A solvent-free protocol for the green synthesis of arylalkylidene rhodanines in a task-specific ionic liquid. Can. J. Chem. 2010, 88, 514–518. [Google Scholar] [CrossRef]
- SwissADME. Available online: http://www.swissadme.ch/ (accessed on 20 July 2021).
- Bauvois, C.; Huston, A.L.; Feller, G. Chapter 95—The cold-active M1 aminopeptidase from the arctic bacterium Colwellia psychrerythraea. In Handbook of Proteolytic Enzymes, 3rd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2013; pp. 463–467. [Google Scholar] [CrossRef]
- Wiseman, L.R.; Wagstaff, A.J.; Brogden, R.N.; Bryson, H.M. Meropenem. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs 1995, 50, 73–101. [Google Scholar] [CrossRef]
- Nencki, M. Ueber die Einwirkung der Monochloressigsäure auf Sulfocyansäure und ihre Salze. J. Prakt. Chem. 1877, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST. Disk Diffusion—Manual v 9.0 (1 January, 2021). Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/ (accessed on 20 July 2021).
Compond/Parameter, Descriptor | Lipinski Rules | Veber Rules | Fraction Csp3 ≤0.25 | GI Absorption | BBB Permeant | ||||
---|---|---|---|---|---|---|---|---|---|
MW ≤500 | Log P ≤5 | NHD ≤5 | NHA ≤10 | NBR ≤10 | TPSA ≤140 | ||||
3 | 269.43 | 2.42 | 1 | 1 | 1 | 86.49 | 0.69 | High | No |
HType of Species | Species of Bacteria and Fungi | Zone of Growth Inhibition (mm ± SE) | |||
---|---|---|---|---|---|
3 | DMSO | Vancomycin | |||
Gram-negative bacteria | Reference strains | Pseudomonas aeruginosa (ATCC 27853 (F-51)) | - | - | - |
Escherichia coli(ATCC 25922) | - | - | - | ||
Raoultella terrigena (ATCC 33257) | - | - | - | ||
Clinical strains | Pseudomonas putida N 182 | - | - | - | |
Escherichia coli N 5 | - | - | - | ||
Raoultella terrigena N1 | - | - | - | ||
Acinetobacter baumanii N 32 | - | - | - | ||
Gram-positive bacteria | Reference strain | Staphylococcus aureus (ATCC 25923 (F-49)) | - | - | 32 ± 0.5 |
Clinical strains | Staphylococcus aureus N 184 | - | - | 16.2 ± 0.2 | |
Staphylococcus aureus N 23 | 7.8 ± 0.2 | 6.3 ± 0.4 | 11.4 ± 0.3 | ||
Kocuria marina N 133 | - | - | 25.1 ± 0.4 | ||
Micrococcus luteus N 136 | 10.2 ± 0.4 | 7.0 ± 0.3 | 12.0 ± 0.2 | ||
Micrococcus luteus N 43 | 11.5 ± 0.2 | - | 6.2 ± 0.2 | ||
Fungi | Reference strain | Candida. albicans(ATCC 885-653) | 9.4 ± 0.2 | 9.2 ± 0.2 | - |
Clinical strain | Candida albicans N 60 | 9.5 ± 0.3 | 9.3 ± 0.2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holota, S.; Lozynskyi, A.; Konechnyi, Y.; Shepeta, Y.; Lesyk, R. 5-[4-(tert-Butyl)cyclohexylidene]-2-thioxothiazolidin-4-one. Molbank 2021, 2021, M1281. https://doi.org/10.3390/M1281
Holota S, Lozynskyi A, Konechnyi Y, Shepeta Y, Lesyk R. 5-[4-(tert-Butyl)cyclohexylidene]-2-thioxothiazolidin-4-one. Molbank. 2021; 2021(4):M1281. https://doi.org/10.3390/M1281
Chicago/Turabian StyleHolota, Serhii, Andrii Lozynskyi, Yulian Konechnyi, Yulia Shepeta, and Roman Lesyk. 2021. "5-[4-(tert-Butyl)cyclohexylidene]-2-thioxothiazolidin-4-one" Molbank 2021, no. 4: M1281. https://doi.org/10.3390/M1281
APA StyleHolota, S., Lozynskyi, A., Konechnyi, Y., Shepeta, Y., & Lesyk, R. (2021). 5-[4-(tert-Butyl)cyclohexylidene]-2-thioxothiazolidin-4-one. Molbank, 2021(4), M1281. https://doi.org/10.3390/M1281