Probing Adamantane Arylhydroxamic Acids against Trypanosoma brucei and Trypanosoma cruzi
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
3. Materials and Methods
3.1. Chemistry
3.2. Synthesis
3.2.1. 4-(Adamant-1-yl)-N-(benzyloxy)benzamide 2a
3.2.2. 2-(4-(Adamantan-1-yl)phenyl)-N-(benzyloxy)acetamide 2b
3.2.3. 2-(4-(Adamant-1-yl)phenoxy)-N-(benzyloxy)acetamide 2c
3.2.4. 4-(Adamant-1-yl)-N-hydroxybenzamide 1a
3.2.5. 2-(4-(Adamantan-1-yl)phenyl)-N-hydroxyacetamide 1b
3.2.6. 2-(4-(Adamantan-1-yl)phenoxy)-N-hydroxyacetamide 1c
3.3. Biological Assays
3.3.1. Cytotoxic Activity against Rat Skeletal Myoblast L6 Cells
3.3.2. Trypanosoma brucei Culturing and Drug Testing
3.3.3. Trypanosoma cruzi Culturing and Drug Testing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanderslott, S. Neglected Tropical Diseases Creating a New Disease Grouping. Nat. Cult. 2020, 15, 78–110. [Google Scholar] [CrossRef] [Green Version]
- Butler, D. Lost in Translation. Nature 2007, 449, 158–159. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.P.S.; Barrett, M.P.; Dranoff, G.; Faraday, C.J.; Gimpelewicz, C.R.; Hailu, A.; Jones, C.L.; Kelly, J.M.; Lazdins-Helds, J.K.; Mäser, P.; et al. Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infect. Dis. 2019, 5, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Francisco, A.F.; Jayawardhana, S.; Olmo, F.; Lewis, M.D.; Wilkinson, S.R.; Taylor, M.C.; Kelly, J.M. Challenges in Chagas Disease Drug Development. Molecules 2020, 25, 2799. [Google Scholar] [CrossRef]
- De Rycker, M.; Baragaña, B.; Duce, S.L.; Gilbert, I.H. Challenges and Recent Progress in Drug Discovery for Tropical Diseases. Nature 2018, 559, 498–506. [Google Scholar] [CrossRef]
- Kourbeli, V.; Chontzopoulou, E.; Moschovou, K.; Pavlos, D.; Mavromoustakos, T.; Papanastasiou, I.P. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021, 26, 4629. [Google Scholar] [CrossRef]
- Dickie, E.A.; Giordani, F.; Gould, M.K.; Mäser, P.; Burri, C.; Mottram, J.C.; Rao, S.P.S.; Barrett, M.P. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop. Med. Infect. Dis. 2020, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- de Koning, H.P. The Drugs of Sleeping Sickness: Their Mechanisms of Action and Resistance, and a Brief History. Trop. Med. Infect. Dis. 2020, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- DNDi—Drugs for Neglected Diseases initiative Portfolio—DNDi. Available online: https://dndi.org/research-development/portfolio/ (accessed on 11 April 2022).
- Papanastasiou, I.; Foscolos, G.B.; Tsotinis, A.; Oláh, J.; Ovádi, J.; Radhika Prathalingam, S.; Kelly, J.M. Conformationally Constrained Adamantaneoxazolines of Pharmacological Interest. Heterocycles 2008, 75, 2043–2061. [Google Scholar] [CrossRef]
- Papanastasiou, I.; Tsotinis, A.; Foscolos, G.B.; Prathalingam, S.R.; Kelly, J.M. Synthesis of Conformationally Constrained Adamantane Imidazolines with Trypanocidal Activity. J. Heterocycl. Chem. 2008, 45, 1401–1406. [Google Scholar] [CrossRef]
- Papanastasiou, I.; Tsotinis, A.; Kolocouris, N.; Prathalingam, S.R.; Kelly, J.M. Design, Synthesis, and Trypanocidal Activity of New Aminoadamantane Derivatives. J. Med. Chem. 2008, 51, 1496–1500. [Google Scholar] [CrossRef] [Green Version]
- Koperniku, A.; Papanastasiou, I.; Foscolos, G.B.; Tsotinis, A.; Taylor, M.C.; Kelly, J.M. Synthesis and Trypanocidal Action of New Adamantane Substituted Imidazolines. Medchemcomm 2013, 4, 856–859. [Google Scholar] [CrossRef]
- Papanastasiou, I.; Foscolos, G.B.; Tsotinis, A.; Kelly, J.M. Aminoadamantane Derivatives against Trypanosoma Brucei; Hughes, G.T., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2016; ISBN 9781634847230. [Google Scholar]
- Foscolos, A.S.; Papanastasiou, I.; Foscolos, G.B.; Tsotinis, A.; Kellici, T.F.; Mavromoustakos, T.; Taylor, M.C.; Kelly, J.M. New Hydrazones of 5-Nitro-2-Furaldehyde with Adamantanealkanohydrazides: Synthesis and In Vitro Trypanocidal Activity. Medchemcomm 2016, 7, 1229–1236. [Google Scholar] [CrossRef]
- Georgiadis, M.O.; Kourbeli, V.; Ioannidou, V.; Karakitsios, E.; Papanastasiou, I.; Tsotinis, A.; Komiotis, D.; Vocat, A.; Cole, S.T.; Taylor, M.C.; et al. Synthesis of Diphenoxyadamantane Alkylamines with Pharmacological Interest. Bioorganic Med. Chem. Lett. 2019, 29, 1278–1281. [Google Scholar] [CrossRef] [Green Version]
- Foscolos, A.S.; Papanastasiou, I.; Tsotinis, A.; Taylor, M.C.; Kelly, J.M. Synthesis and Evaluation of Nifurtimox–Adamantane Adducts with Trypanocidal Activity. ChemMedChem 2019, 14, 1227–1231. [Google Scholar] [CrossRef]
- Georgiadis, M.-O.; Kourbeli, V.; Papanastasiou, I.P.; Tsotinis, A.; Taylor, M.C.; Kelly, J.M. Synthesis and Evaluation of Novel 2,4-Disubstituted Arylthiazoles against T. Brucei. RSC Med. Chem. 2020, 11, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Munson, J.W. Hydroxamic Acids; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783642381102. [Google Scholar]
- Fytas, C.; Zoidis, G.; Tzoutzas, N.; Taylor, M.C.; Fytas, G.; Kelly, J.M. Novel Lipophilic Acetohydroxamic Acid Derivatives Based on Conformationally Constrained Spiro Carbocyclic 2,6-Diketopiperazine Scaffolds with Potent Trypanocidal Activity. J. Med. Chem. 2011, 54, 5250–5254. [Google Scholar] [CrossRef]
- Koperniku, A.; Foscolos, A.-S.; Papanastasiou, I.; Foscolos, G.B.; Tsotinis, A.; Schols, D. 4-(1-Adamantyl)Phenylalkylamines with Potential Antiproliferative Activity. Lett. Org. Chem. 2016, 13, 171–176. [Google Scholar] [CrossRef]
- Lee, K.; Goo, J.-I.; Jung, H.Y.; Kim, M.; Boovanahalli, S.K.; Park, H.R.; Kim, M.-O.; Kim, D.-H.; Lee, H.S.; Choi, Y. Discovery of a Novel Series of Benzimidazole Derivatives as Diacylglycerol Acyltransferase Inhibitors. Bioorganic Med. Chem. Lett. 2012, 22, 7456–7460. [Google Scholar] [CrossRef]
- Brown, D.A.; Glass, W.K.; Mageswaran, R.; Girmay, B. Cis-Trans Isomerism in Monoalkylhydroxamic Acids by 1H, 13C and 15N NMR Spectroscopy. Magn. Reson. Chem. 1988, 26, 970–973. [Google Scholar] [CrossRef]
- Brown, D.A.; Glass, W.K.; Mageswaran, R.; Mohammed, S.A. 1H and 13C NMR Studies of Isomerism in Hydroxamic Acids. Magn. Reson. Chem. 1991, 29, 40–45. [Google Scholar] [CrossRef]
- Tsatsaroni, A.; Zoidis, G.; Zoumpoulakis, P.; Tsotinis, A.; Taylor, M.C.; Kelly, J.M.; Fytas, G. An E/Z Conformational Behaviour Study on the Trypanocidal Action of Lipophilic Spiro Carbocyclic 2,6-Diketopiperazine-1-Acetohydroxamic Acids. Tetrahedron Lett. 2013, 54, 3238–3240. [Google Scholar] [CrossRef] [Green Version]
- Keth, J.; Johann, T.; Frey, H. Hydroxamic Acid: An Underrated Moiety? Marrying Bioinorganic Chemistry and Polymer Science. Biomacromolecules 2020, 21, 2546–2556. [Google Scholar] [CrossRef]
- Tolosa, S.; Mora-Diez, N.; Hidalgo, A.; Sansón, J.A. Amide-Imide Tautomerism of Acetohydroxamic Acid in Aqueous Solution: Quantum Calculation and SMD Simulations. RSC Adv. 2014, 4, 44757–44768. [Google Scholar] [CrossRef]
Cmpd | T. brucei IC50 (μM) a | T. brucei IC90 (μM) a | L6 Cells IC50 (μM) a | S.I. L6/Tb IC50 b |
---|---|---|---|---|
1a | 19.1 ± 0.3 | 26.4 ± 0.2 | 23.0 ± 0.5 | 1.2 |
1b | 2.70 ± 0.18 | 4.14 ± 0.28 | 15.7 ± 1.3 | 5.8 |
1c | 0.286 ± 0.007 | 0.631 ± 0.020 | 4.85 ± 0.50 | 17 |
Fexinidazole c | 2.40 ± 0.18 | 4.51 ± 0.57 |
Cmpd | T. cruzi IC50 (μM) a | T. cruzi IC90 (μM) a | L6 Cells IC50 (μM) a | S.I. L6/Tc IC50 b |
---|---|---|---|---|
1a | 8.81 ± 0.33 | 17.8 ± 0.4 | 23.0 ± 0.5 | 2.6 |
1b | 2.25 ± 0.06 | 4.25 ± 0.08 | 15.7 ± 1.3 | 7.0 |
1c | 0.432 ± 0.037 | 0.737 ± 0.083 | 4.85 ± 0.50 | 11 |
Benznidazole d | 5.39 ± 0.19 | 9.74 ± 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foscolos, A.S.; Tsotinis, A.; Taylor, M.C.; Kelly, J.M.; Papanastasiou, I.P. Probing Adamantane Arylhydroxamic Acids against Trypanosoma brucei and Trypanosoma cruzi. Molbank 2022, 2022, M1363. https://doi.org/10.3390/M1363
Foscolos AS, Tsotinis A, Taylor MC, Kelly JM, Papanastasiou IP. Probing Adamantane Arylhydroxamic Acids against Trypanosoma brucei and Trypanosoma cruzi. Molbank. 2022; 2022(2):M1363. https://doi.org/10.3390/M1363
Chicago/Turabian StyleFoscolos, Angeliki Sofia, Andrew Tsotinis, Martin C. Taylor, John M. Kelly, and Ioannis P. Papanastasiou. 2022. "Probing Adamantane Arylhydroxamic Acids against Trypanosoma brucei and Trypanosoma cruzi" Molbank 2022, no. 2: M1363. https://doi.org/10.3390/M1363
APA StyleFoscolos, A. S., Tsotinis, A., Taylor, M. C., Kelly, J. M., & Papanastasiou, I. P. (2022). Probing Adamantane Arylhydroxamic Acids against Trypanosoma brucei and Trypanosoma cruzi. Molbank, 2022(2), M1363. https://doi.org/10.3390/M1363