4-[Bis(thiazol-2-ylamino)methyl]phenol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Compound 3
2.2. Tyrosinase Inhibitory Activity
2.2.1. Mushroom Tyrosinase Inhibition Assay
2.2.2. Kinetic Analysis of the Inhibition of Tyrosinase
3. Materials and Methods
3.1. Synthesis of 3
3.2. Mushroom Tyrosinase Inhibition Assay
3.3. Kinetic Analysis of the Inhibition of Tyrosinase
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem. 2019, 170, 237–260. [Google Scholar] [CrossRef] [PubMed]
- Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules 2019, 24, 1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lino, C.I.; de Souza, I.G.; Borelli, B.A.; Matos, T.T.S.; Teixeira, I.N.S.; Ramos, J.P.; de Souza Fagundes, E.M.; de Oliveira Fernandes, P.; Maltarollo, V.G.; Johann, S.; et al. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem. 2018, 151, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; et al. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem. 2019, 175, 162–171. [Google Scholar] [CrossRef]
- Sayed, A.R.; Gomha, S.M.; Taher, E.A.; Muhammad, Z.A.; El-Seedi, H.R.; Gaber, H.M.; Ahmed, M.M. One-pot synthesis of novel thiazoles as potential anti-cancer agents. Drug Des. Dev. Ther. 2020, 14, 1363–1375. [Google Scholar] [CrossRef] [Green Version]
- Grozav, A.; Găină, L.I.; Pileczki, V.; Crisan, O.; Silaghi-Dumitrescu, L.; Therrien, B.; Zaharia, V.; Berindan-Neagoe, I. The synthesis and antiproliferative activities of new arylidene-hydrazinyl-thiazole derivatives. Int. J. Mol. Sci. 2014, 15, 22059–22072. [Google Scholar] [CrossRef] [Green Version]
- Łączkowski, K.Z.; Misiura, K.; Świtalska, M.; Wietrzyk, J.; Baranowska-Łączkowska, A.; Fernández, B.; Paneth, A.; Plech, T. Synthesis and in vitro antiproliferative activity of thiazole-based nitrogen mustards. The hydrogen bonding interaction between model systems and nucleobases. Anti-Cancer Agents Med. Chem. 2014, 14, 1271–1281. [Google Scholar] [CrossRef]
- Łączkowski, K.Z.; Biernasiuk, A.; Baranowska-Łączkowska, A.; Zielińska, S.; Sałat, K.; Furgała, A.; Misiura, K.; Malm, A. Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2H-thiopyran-4-yl based thiazoles and selenazoles. J. Enzym. Inhib. Med. Chem. 2016, 31, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.A.; Partap, A.; Khisal, S.; Yar, M.S.; Mishra, R. Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues. Bioorganic Chem. 2020, 99, 103584. [Google Scholar] [CrossRef]
- Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K.Z. Benzo[b]thiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity. Eur. J. Med. Chem. 2019, 184, 111765. [Google Scholar] [CrossRef]
- Hencken, C.P.; Jones-Brando, L.; Bordón, C.; Stohler, R.; Mott, B.T.; Yolken, R.; Posner, G.H.; Woodard, L.E. Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii. J. Med. Chem. 2010, 53, 3594–3601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salar, U.; Khan, K.M.; Chigurupati, S.; Syed, S.; Vijayabalan, S.; Wadood, A.; Riaz, M.; Ghufran, M.; Perveen, S. New hybrid scaffolds based on hydrazinyl thiazole substituted coumarin; as novel leads of dual potential; in vitro α-amylase inhibitory and antioxidant (DPPH and ABTS radical scavenging) activities. Med. Chem. 2019, 15, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Maksoud, M.S.; Lee, B.S.; Gamal El-Din, M.M.; Jeon, H.R.; Kwon, D.; Ammar, U.M.; Mersal, K.I.; Ali, E.M.H.; Lee, K.T.; Yoo, K.H.; et al. Discovery of new imidazo[2,1-b]thiazole derivatives as potent pan-RAF inhibitors with promising in vitro and in vivo anti-melanoma activity. J. Med. Chem. 2021, 64, 6877–6901. [Google Scholar] [CrossRef]
- Bijev, A.; Prodanova, P. One-step synthesis of 2-aminothiazoline derivatives free of lachrymatory intermediates. Synth. Commun. 2006, 36, 3095–3101. [Google Scholar] [CrossRef]
- Murru, S.; Singh, C.B.; Kavala, V.; Patel, B.K. A convenient one-pot synthesis of thiazol-2-imines: Application in the construction of pifithrin analogues. Tetrahedron 2008, 64, 1931–1942. [Google Scholar] [CrossRef]
- Heravi, M.M.; Moghimi, S. An efficient synthesis of thiazol-2-imine derivatives via a one-pot, three-component reaction. Tetrahedron Lett. 2012, 53, 392–394. [Google Scholar] [CrossRef]
- Santosh Kumar, G.; Pushpa Ragini, S.; Meshram, H.M. Catalyst free, regioselective one-pot three-component synthesis of thiazol-2-imine derivatives in ionic liquid. Tetrahedron Lett. 2013, 54, 5974–5978. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Barve, I.J.; Sun, C.-M. One-Pot Three-Component Synthesis of 2-Imino-1,3-thiazolines on Soluble Ionic Liquid Support. ACS Comb. Sci. 2016, 18, 638–643. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, X.; Zhang, Z.; Song, P.; Li, Y. Trypsin-catalyzed multicomponent reaction: A novel and efficient one-pot synthesis of thiazole-2-imine derivatives. J. Biotechnol. 2017, 241, 14–21. [Google Scholar] [CrossRef]
- Premakumari, C.; Muralikrishna, A.; Padmaja, A.; Padmavathi, V.; Park, S.J.; Kim, T.-J.; Reddy, G.D. Synthesis, antimicrobial and anticancer activities of amido sulfonamido methane linked bis heterocycles. Arab. J. Chem. 2014, 7, 385–395. [Google Scholar] [CrossRef]
- Griffiths, K.; Kumar, P.; Akien, G.R.; Chilton, N.F.; Abdul-Sada, A.; Tizzard, G.J.; Colesd, S.J.; Kostakis, G.E. Tetranuclear Zn/4f coordination clusters as highly efficient catalysts for Friedel–Crafts alkylation. Chem. Commun. 2016, 52, 7866–7869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.; Mahesar, P.A.; Channar, P.A.; Abbas, Q.; Larik, F.A.; Hassan, M.; Raza, H.; Seo, S.-Y. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase. Bioorganic Chem. 2017, 74, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.H.; Ryu, S.Y.; Choi, E.J.; Kang, S.H.; Chang, I.M.; Min, K.R.; Kim, Y. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243, 801–803. [Google Scholar] [CrossRef]
- Piechowska, K.; Mizerska-Kowalska, M.; Zdzisińska, B.; Cytarska, J.; Baranowska-Łączkowska, A.; Jaroch, K.; Łuczykowski, K.; Płaziński, W.; Bojko, B.; Kruszewski, S.; et al. Tropinone-derived alkaloids as potent anticancer agents: Synthesis, tyrosinase inhibition, mechanism of action, DFT calculation, and molecular docking studies. Int. J. Mol. Sci. 2020, 21, 9050. [Google Scholar] [CrossRef] [PubMed]
Compound at 0.2 mM | Inhibitory Mechanism | Vmax | Km | IC50 ± SD [μM] |
---|---|---|---|---|
3 | Competitive | 0.6502 | 0.8048 | 29.71 ± 4.41 |
Ascorbic acid | 385.6 ± 11.58 | |||
Kojic acid | 72.27 ± 3.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cytarska, J.; Kolasa, A. 4-[Bis(thiazol-2-ylamino)methyl]phenol. Molbank 2023, 2023, M1550. https://doi.org/10.3390/M1550
Cytarska J, Kolasa A. 4-[Bis(thiazol-2-ylamino)methyl]phenol. Molbank. 2023; 2023(1):M1550. https://doi.org/10.3390/M1550
Chicago/Turabian StyleCytarska, Joanna, and Anna Kolasa. 2023. "4-[Bis(thiazol-2-ylamino)methyl]phenol" Molbank 2023, no. 1: M1550. https://doi.org/10.3390/M1550
APA StyleCytarska, J., & Kolasa, A. (2023). 4-[Bis(thiazol-2-ylamino)methyl]phenol. Molbank, 2023(1), M1550. https://doi.org/10.3390/M1550