3-[4-(2-Phenylethyl)piperazin-1-yl]-7H-benzo[de]anthracen-7-one
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. X-ray Crystallographic Study
2.3. Spectroscopic Properties
3. Materials and Methods
3.1. Materials and Basic Measurements
3.2. Synthesis and Characterization
3.3. Single Crystal X-ray Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hunger, K. (Ed.) Industrial Dyes, Chemistry, Properties, Applications; Wiley-VCH: Weinheim, Germany, 2003; pp. 574–589. [Google Scholar]
- Bureš, F. Fundamental aspects of property tuning in push–pull molecules. RSC Adv. 2014, 4, 58826–58851. [Google Scholar] [CrossRef] [Green Version]
- Tsiko, U.; Sych, G.; Volyniuk, D.; Bezvikonnyi, O.; Keruckiene, R.; Lazauskas, A.; Grazulevicius, J.V. Self-recovering mechanochromic luminescence of the derivatives of benzanthrone and carbazole: Towards damage-resistive information recording and security probes. Dye. Pigment. 2022, 199, 110082. [Google Scholar] [CrossRef]
- Kirilova, E.; Mickevica, I.; Mezaraupe, L.; Puckins, A.; Rubenina, I.; Osipovs, S.; Kokina, I.; Bulanovs, A.; Kirjusina, M.; Gavarane, I. Novel dye for detection of callus embryo by confocal laser scanning fluorescence microscopy. Luminescence 2019, 34, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Gavarane, I.; Kirilova, E.; Rubeniņa, I.; Mežaraupe, L.; Osipovs, S.; Deksne, G.; Pučkins, A.; Kokina, I.; Bulanovs, A.; Kirjušina, M. A Simple and Rapid Staining Technique for Sex Determination of Trichinella Larvae Parasites by Confocal Laser Scanning Microscopy. Microsc. Microanal. 2019, 25, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Staneva, D.; Vasileva-Tonkova, E.; Grabchev, I. pH sensor potential and antimicrobial activity of a new PPA dendrimer modified with benzanthrone fluorophores in solution and on viscose fabric. J. Photochem. Photobiol. A 2019, 375, 24–29. [Google Scholar] [CrossRef]
- Kalnina, I.; Klimkane, L.; Kirilova, E.; Toma, M.M.; Kizane, G.; Meirovics, I. Fluorescent Probe ABM for Screening Gastrointestinal Patient’s Immune State. J. Fluoresc. 2007, 17, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Altaf, Y.; Ullah, S.; Khan, F.A.; Maalik, A.; Rubab, S.L.; Hashmi, M.A. Finding New Precursors for Light Harvesting Materials: A Computational Study of the Fluorescence Potential of Benzanthrone Dyes. ACS Omega 2021, 6, 32334–32341. [Google Scholar] [CrossRef] [PubMed]
- Kirilova, E.M.; Meirovics, I.A.; Belyakov, S.V. Preparation and Properties of Nitrogen Derivatives of Benzanthrone with Heterocyclic Fragments. Chem. Heterocycl. Compd. 2002, 38, 789. [Google Scholar] [CrossRef]
- Shivraj; Siddlingeshwar, B.; Thomas, A.; Kirilova, E.; Divakar, D.; Alkheraif, A. Experimental and theoretical insights on the effect of solvent polarity on the photophysical properties of a benzanthrone dye. Spectrochim. Acta A 2019, 218, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Tarabara, U.; Kirilova, E.; Kirilov, G.; Vus, K.; Zhytniakivska, O.; Trusova, V.; Gorbenko, G. Benzanthrone dyes as mediators of cascade energy transfer in insulin amyloid fibrils. J. Mol. Liq. 2021, 324, 115102. [Google Scholar] [CrossRef]
- Krasovitskii, B.M.; Bolotin, B.M. Organic Luminescent Materials; Wiley-VCH: New York, NY, USA, 1988; pp. 149–152. [Google Scholar]
- Kapusta, P.; Machalický, O.; Hrdina, R.; Nepraš, M.; Zimmt, M.B.; Fidler, V. Photophysics of 3-Substituted Benzanthrones: Substituent and Solvent Control of Intersystem Crossing. J. Phys. Chem. A 2003, 107, 9740–9746. [Google Scholar] [CrossRef]
- Grabchev, I.; Moneva, I.; Wolarz, E.; Bauman, D.; Stoyanov, S. Spectral Properties of 3-Benzanthrone Derivative Dyes in Isotropic Solvents, Polymer Film and Liquid Crystal. Z. Naturforsch. 2001, 56, 291–296. [Google Scholar] [CrossRef]
- Wolfbeis, O.S.; Carlini, F.M. Long-wavelength fluorescent indicators for the determination of oxygen partial pressures. Anal. Chim. Acta 1984, 160, 301–304. [Google Scholar] [CrossRef]
- Bhujle, V.V.; Padhye, M.R. Effect of solvents on absorption and fluorescence-spectra of some substituted benzanthrones. Indian J. Chem. 1971, 9, 1405–1406. [Google Scholar]
- Weihs, F.; Dacres, H. Red-shifted bioluminescence Resonance Energy Transfer: Improved tools and materials for analytical in vivo approaches. Trends Anal. Chem. 2019, 116, 61–73. [Google Scholar] [CrossRef]
- Sednev, M.V.; Belov, V.N.; Hell, S.W. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: A review. Methods Appl. Fluoresc. 2015, 3, 042004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, J.V.; Chenoweth, D.M.; Petersson, E.J. Rational design of small molecule fluorescent probes for biological applications. Org. Biomol. Chem. 2020, 18, 5747–5763. [Google Scholar] [CrossRef] [PubMed]
- Palatinus, L.; Prathapa, S.J.; van Smaalen, S. EDMA: A computer program for topological analysis of discrete electron densities. J. Appl. Cryst. 2012, 45, 575–580. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef] [Green Version]
C2–C3–N18–C19 | 117.1(1) |
C2–C3–N18–C23 | −11.2(2) |
C3–N18–C19–C20 | 167.19(8) |
C3–N18–C23–C22 | −167.70(8) |
C17–C3–N18–C19 | −65.8(1) |
C17–C3–N18–C23 | 165.83(9) |
N18–C19–C20–N21 | 59.8(1) |
C19–N18–C23–C22 | 60.2(1) |
C19–C20–N21–C22 | −56.9(1) |
C19–C20–N21–C24 | −179.99(8) |
C20–N21–C22–C23 | 56.8(1) |
C20–N21–C24–C25 | −168.23(9) |
N21–C22–C23–N18 | −59.7(1) |
N21–C24–C25–C26 | −176.77(8) |
C22–N21–C24–C25 | 70.4(1) |
C23–N18–C19–C20 | −60.4(1) |
C24–N21–C22–C23 | 178.22(8) |
C24–C25–C26–C27 | 61.8(1) |
C24–C25–C26–C31 | −118.8(1) |
Solvent | Absorption λabs, nm | Extinction Coefficient lgε | Fluorescence λem, nm | Stokes Shift, cm−1 |
---|---|---|---|---|
Hexane | 426 | 4.05 | 537 | 4852 |
Benzene | 443 | 4.11 | 596 | 5795 |
Ethyl acetate | 440 | 4.15 | 595 | 5921 |
CHCl3 | 447 | 4.15 | 615 | 6111 |
Acetone | 447 | 4.08 | 641 | 6771 |
DMF | 452 | 4.09 | 631 | 6276 |
DMSO | 457 | 4.08 | 643 | 6330 |
Ethanol | 447 | 4.01 | 664 | 7311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fridmans, R.; Puckins, A.; Osipovs, S.; Belyakov, S.; Kirilova, E. 3-[4-(2-Phenylethyl)piperazin-1-yl]-7H-benzo[de]anthracen-7-one. Molbank 2023, 2023, M1607. https://doi.org/10.3390/M1607
Fridmans R, Puckins A, Osipovs S, Belyakov S, Kirilova E. 3-[4-(2-Phenylethyl)piperazin-1-yl]-7H-benzo[de]anthracen-7-one. Molbank. 2023; 2023(1):M1607. https://doi.org/10.3390/M1607
Chicago/Turabian StyleFridmans, Romans, Aleksandrs Puckins, Sergejs Osipovs, Sergey Belyakov, and Elena Kirilova. 2023. "3-[4-(2-Phenylethyl)piperazin-1-yl]-7H-benzo[de]anthracen-7-one" Molbank 2023, no. 1: M1607. https://doi.org/10.3390/M1607
APA StyleFridmans, R., Puckins, A., Osipovs, S., Belyakov, S., & Kirilova, E. (2023). 3-[4-(2-Phenylethyl)piperazin-1-yl]-7H-benzo[de]anthracen-7-one. Molbank, 2023(1), M1607. https://doi.org/10.3390/M1607