Four-Step Synthesis of 3-Allyl-2-(allyloxy)-5-bromoaniline from 2-Allylphenol
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of 2-Allyl-6-nitrophenol 2
3.3. Synthesis of 2-Allyl-4-bromo-6-nitrophenol 3
3.4. Synthesis of 1-Allyl-2-(allyloxy)-5-bromo-3-nitrobenzene 4
3.5. Synthesis of 3-Allyl-2-(allyloxy)-5-bromoaniline 5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nag, S.; Batra, S. Applications of Allylamines for the Syntheses of Aza-Heterocycles. Tetrahedron 2011, 67, 8959–9061. [Google Scholar] [CrossRef]
- Chen, J.G.; Crooks, R.M.; Seefeldt, L.C.; Bren, K.L.; Bullock, R.M.; Darensbourg, M.Y.; Holland, P.L.; Hoffman, B.; Janik, M.J.; Jones, A.K.; et al. Beyond Fossil Fuel–Driven Nitrogen Transformations. Science 2018, 360, eaar6611. [Google Scholar] [CrossRef] [PubMed]
- Askin, D.; Angst, C.; Danishefsky, S. A Total Synthesis of N-Acetylactinobolamine. J. Org. Chem. 1985, 50, 5005–5007. [Google Scholar] [CrossRef]
- Anjalin, M.; Kanagathara, N.; Baby Suganthi, A.R. A Brief Review on Aniline and Its Derivatives. Mater. Today Proc. 2020, 33, 4751–4755. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, X.; Huang, X.; Luo, X.; Zhang, C.; Wei, J.; Pan, J.; Liang, Y.; Zhu, Y.; Qin, Q.; et al. From Alkylarenes to Anilines via Site-Directed Carbon–Carbon Amination. Nat. Chem. 2019, 11, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Fang, S.; Guo, S.; Jiang, H.; Yang, S.; Wu, W. Palladium-Catalyzed Tandem Nucleophilic Addition/C–H Functionalization of Anilines and Bromoalkynes for the Synthesis of 2-Phenylindoles. Org. Lett. 2023, 25, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Takahashi, Y. Regioselective C–H Azidation of Anilines and Application to Synthesis of Key Intermediate for Pharmaceutical. J. Org. Chem. 2021, 86, 7842–7848. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.C.; Waring, R.H. Aminophenols. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000; ISBN 978-3-527-30673-2. [Google Scholar]
- Huang, X.; Fulton, B.; White, K.; Bugarin, A. Metal-Free, Regio- and Stereoselective Synthesis of Linear (E)-Allylic Compounds Using C, N, O, and S Nucleophiles. Org. Lett. 2015, 17, 2594–2597. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.S.; Bugarin, A. One-Pot Synthesis of α-Alkyl Styrene Derivatives. ACS Omega 2021, 6, 20619–20628. [Google Scholar] [CrossRef] [PubMed]
- Hardy, D.; Isbel, S.R.; Bugarin, A.; Wagle, D.V. Quantum Chemical Insight into 1,2-Shift Rearrangement in Bromination of Allylaryls. ACS Omega 2023, 8, 42311–42318. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Wolf, F. Synthesis of Phenylpropanoids via Matsuda–Heck Coupling of Arene Diazonium Salts. J. Org. Chem. 2017, 82, 4386–4395. [Google Scholar] [CrossRef] [PubMed]
- Olea, A.F.; Espinoza, L.; Sedan, C.; Thomas, M.; Martínez, R.; Mellado, M.; Carrasco, H.; Díaz, K. Synthesis and In Vitro Growth Inhibition of 2-Allylphenol Derivatives against Phythopthora Cinnamomi Rands. Molecules 2019, 24, 4196. [Google Scholar] [CrossRef] [PubMed]
- Furst, C.G.; Cota, P.H.P.; Dos Santos Wanderley, T.A.; Alberto, E.E. Synthesis of 2-Bromomethyl-2,3-Dihydrobenzofurans from 2-Allylphenols Enabled by Organocatalytic Activation of N-Bromosuccinimide. New J. Chem. 2020, 44, 15677–15684. [Google Scholar] [CrossRef]
- Markwalder, J.A.; Balog, A.J.; Williams, D.K.; Nara, S.J.; Reddy, R.; Roy, S.; Kanyaboina, Y.; Li, X.; Johnston, K.; Fan, Y.; et al. Synthesis and Biological Evaluation of Biaryl Alkyl Ethers as Inhibitors of IDO1. Bioorg. Med. Chem. Lett. 2023, 88, 129280. [Google Scholar] [CrossRef] [PubMed]
- Van Otterlo, W.A.L.; Morgans, G.L.; Madeley, L.G.; Kuzvidza, S.; Moleele, S.S.; Thornton, N.; De Koning, C.B. An Isomerization-Ring-Closing Metathesis Strategy for the Synthesis of Substituted Benzofurans. Tetrahedron 2005, 61, 7746–7755. [Google Scholar] [CrossRef]
- Van Otterlo, W.A.L.; Ngidi, E.L.; Kuzvidza, S.; Morgans, G.L.; Moleele, S.S.; De Koning, C.B. Ring-Closing Metathesis for the Synthesis of 2H- and 4H-Chromenes. Tetrahedron 2005, 61, 9996–10006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio, E.B.; Isbel, S.R.; Bugarin, A. Four-Step Synthesis of 3-Allyl-2-(allyloxy)-5-bromoaniline from 2-Allylphenol. Molbank 2024, 2024, M1773. https://doi.org/10.3390/M1773
Aparicio EB, Isbel SR, Bugarin A. Four-Step Synthesis of 3-Allyl-2-(allyloxy)-5-bromoaniline from 2-Allylphenol. Molbank. 2024; 2024(1):M1773. https://doi.org/10.3390/M1773
Chicago/Turabian StyleAparicio, Enrique B., Stephen R. Isbel, and Alejandro Bugarin. 2024. "Four-Step Synthesis of 3-Allyl-2-(allyloxy)-5-bromoaniline from 2-Allylphenol" Molbank 2024, no. 1: M1773. https://doi.org/10.3390/M1773
APA StyleAparicio, E. B., Isbel, S. R., & Bugarin, A. (2024). Four-Step Synthesis of 3-Allyl-2-(allyloxy)-5-bromoaniline from 2-Allylphenol. Molbank, 2024(1), M1773. https://doi.org/10.3390/M1773