rel-(2R,3S)-2-((Diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Synthesis of rel-(2R,3S)-2-((Diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunt, S. The Non-Protein Amino Acids. In Chemistry and Biochemistry of the Amino Acids, 1st ed.; Barrett, G.C., Ed.; Chapman and Hall: London, UK, 1985; pp. 55–85. [Google Scholar]
- O’Donnell, M.J. The Enantioselective Synthesis of α-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters. Acc. Chem. Res. 2004, 37, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Nájera, C.; Sansano, J.M. Catalytic Asymmetric Synthesis of α-Amino Acids. Chem. Rev. 2007, 107, 4584–4671. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, S.; Maruoka, K. Recent Developments in Asymmetric Phase-Transfer Reactions. Angew. Chem. Int. Ed. 2013, 52, 4312–4348. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.J.; Polt, R.L. A mild and efficient route to Schiff base derivatives of amino acids. J. Org. Chem. 1982, 47, 2663–2666. [Google Scholar] [CrossRef]
- Meyer, N.; Werner, F.; Opatz, T. One-Pot Synthesis of Polysubstituted Pyrrolidines from Aminonitriles. Synthesis 2005, 6, 945–956. [Google Scholar] [CrossRef]
- He, W.; Wang, Q.; Wang, Q.; Zhang, B.; Sun, X.; Zhang, S. Synthesis of Novel Chiral Phase-Transfer Catalysts and Their Application to Asymmetric Synthesis of α-Amino Acid Derivatives. Synlett 2009, 8, 1311–1314. [Google Scholar] [CrossRef]
- Waser, M.; Gratzer, K.; Herchl, R.; Müller, N. Design, synthesis, and application of tartaric acid derived N-spiroquaternary ammonium salts as chiral phase-transfer catalysts. Org. Biomol. Chem. 2012, 10, 251–254. [Google Scholar] [CrossRef]
- Schettini, R.; De Riccardis, F.; Della Sala, G.; Izzo, I. Enantioselective Alkylation of Amino Acid Derivatives Promoted by Cyclic Peptoids under Phase-Transfer Conditions. J. Org. Chem. 2016, 81, 2494–2505. [Google Scholar] [CrossRef]
- Dryanska, V. Phase-Transfer Catalyzed Additions. VI. Reaction of N-Diphenylmethyleneaminoacetonitrile with Aromatic Aldehydes. Synth. Commun. 1990, 20, 1055–1061. [Google Scholar] [CrossRef]
- Dryanska, V.; Tasheva, D. Phase-transfer catalyzed additions. VII. Preparation of 3-aryl-3-arylamino-2-(N-diphenylmethyleneamino)propanenitriles. Synth. Commun. 1992, 22, 63–71. [Google Scholar] [CrossRef]
- Ooi, T.; Kameda, M.; Taniguchi, M.; Maruoka, K. Development of Highly Diastereo- and Enantioselective Direct Asymmetric Aldol Reaction of a Glycinate Schiff Base with Aldehydes Catalyzed by Chiral Quaternary Ammonium Salts. J. Am. Chem. Soc. 2004, 126, 9685–9694. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, O.; Ueno, K.; Kanemasa, S.; Yorozu, K. Michael Addition and Alkylation of 2-Azaallyl Anions Derived from N-(1-Cyanoalkyl)imines, and Stereoselective Cyclization of Imine Esters or Ketones Leading to 1-Pyrrolines. Bull. Chem. Soc. Jpn. 1987, 60, 3347–3358. [Google Scholar] [CrossRef]
- Meyer, N.; Opatz, T. A Short Synthesis of Polysubstituted Pyrrolidines via α-(Alkylideneamino)nitriles. Synlett 2004, 5, 787–790. [Google Scholar] [CrossRef]
- Tasheva, D.; Petrova, A.; Simova, S. Convenient Synthesis of Some Substituted 5-Oxonitriles under Aqueous Conditions: Synthesis of 3,4-Dihydro-2H-pyrrole-2-carbonitriles. Synth. Commun. 2007, 37, 3971–3979. [Google Scholar] [CrossRef]
- Ma, T.; Fu, X.; Kee, C.W.; Zong, L.; Pan, Y.; Huang, K.-W.; Tan, C.-H. Pentanidium-Catalyzed Enantioselective Phase-Transfer Conjugate Addition Reactions. J. Am. Chem. Soc. 2011, 133, 2828–2831. [Google Scholar] [CrossRef]
- Nie, J.; Hua, M.-Q.; Xiong, H.-Y.; Zheng, Y.; Ma, J.-A. Asymmetric Phase-Transfer-Catalyzed Conjugate Addition of Glycine Imine to Exocyclic α,β-Unsaturated Ketones: Construction of Polycyclic Imines Containing Three Stereocenters. J. Org. Chem. 2012, 77, 4209–4216. [Google Scholar] [CrossRef]
- Konno, T.; Watanabe, S.; Takahashi, T.; Tokoro, Y.; Fukuzawa, S. Silver/ThioClickFerrophos Complex as an Effective Catalyst for Asymmetric Conjugate Addition of Glycine Imino Ester to Unsaturated Malonates and α-Enones. Org. Lett. 2013, 15, 4418–4421. [Google Scholar] [CrossRef]
- Timofeeva, D.S.; Ofial, A.R.; Mayr, H. Nucleophilic reactivities of Schiff base derivatives of amino acids. Tetrahedron 2019, 75, 459–463. [Google Scholar] [CrossRef]
- Lee, H.; Nam, H.; Lee, S.Y. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J. Am. Chem. Soc. 2024, 146, 3065–3074. [Google Scholar] [CrossRef]
- Stokka, A.J.; Flatmark, T. 3-(2-Thienyl)-L-Alanine as a Competitive Substrate Analogue and Activator of Human Phenylalanine Hydroxylase. In Chemistry and Biology of Pteridines and Folates, 1st ed.; Milstien, S., Kapatos, G., Levine, R.A., Shane, B., Eds.; Springer: Boston, MA, USA, 2002; pp. 109–113. [Google Scholar] [CrossRef]
- Whalley, E.T.; Nwator, I.A.; Stewart, J.M.; Vavrek, R.J. Analysis of the receptors mediating vascular actions of bradykinin. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1987, 336, 430–433. [Google Scholar] [CrossRef]
- Rex, D.A.B.; Vaid, N.; Deepak, K.; Dagamajalu, S.; Prasad, T.S.K. A comprehensive review on current understanding of bradykinin in COVID-19 and inflammatory diseases. Mol. Biol. Rep. 2022, 49, 9915–9927. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-T.; Yang, W.-Z.; Wang, S.-X.; Li, S.-H.; Li, T.-S. Improved synthesis of chalcones under ultrasound irradiation. Ultrason. Sonochemistry 2002, 9, 237–239. [Google Scholar] [CrossRef] [PubMed]
Compd. | Ar1 | Ar2 | δ (H4a), ppm | 3J (H3-H4a), Hz | δ (H4b), ppm | 3J (H3-H4b), Hz |
---|---|---|---|---|---|---|
3 a | C4H3S | C6H5 | 3.76 | 4.6 | 3.87 | 8.9 |
3 b | C4H3S | C6H5 | 3.59 | 7.7 | 3.85–3.91 | - d |
a,c | C6H5 | C6H5 | 3.74 | 4.8 | 3.85 | 9.1 |
b,c | C6H5 | C6H5 | 3.63 | 8.1 | 4.00 | 5.4 |
a,c | 4-ClC6H4 | C6H5 | 3.71 | 5.2 | 3.82 | 8.6 |
a,c | 4-CH3C6H4 | C6H5 | 3.69 | 5.4 | 3.79 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasheva, D.N.; Mihaylova, V.M. rel-(2R,3S)-2-((Diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile. Molbank 2024, 2024, M1881. https://doi.org/10.3390/M1881
Tasheva DN, Mihaylova VM. rel-(2R,3S)-2-((Diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile. Molbank. 2024; 2024(3):M1881. https://doi.org/10.3390/M1881
Chicago/Turabian StyleTasheva, Donka N., and Vesela M. Mihaylova. 2024. "rel-(2R,3S)-2-((Diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile" Molbank 2024, no. 3: M1881. https://doi.org/10.3390/M1881
APA StyleTasheva, D. N., & Mihaylova, V. M. (2024). rel-(2R,3S)-2-((Diphenylmethylene)amino)-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanenitrile. Molbank, 2024(3), M1881. https://doi.org/10.3390/M1881