Bis{µ-(2,2′-bipyridine-1κ2N,N′)-(6,6′-dicarbonyl-1κ2O,O′:2κO′)bis(N,N-diethylthioureato-2κS)}(acetato-1κO)(µ-acetato-1κO:2-κO′)(methanol-2κO)thoriumnickel
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Considerations
3.2. Radiation Precautions
3.3. Synthesis of [ThNi(Lbipy)2(CH3COO)2(MeOH)]
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beyer, L.; Hoyer, E.; Liebscher, J.; Hartmann, H. Komplexbildung mit N-Acyl-thioharnstoffen. Z. Chem. 1981, 21, 81–91. [Google Scholar] [CrossRef]
- Beyer, L.; Hoyer, E.; Hennig, H.; Kirmse, R.; Hartmann, H.; Liebscher, J. Synthese und Charakterisierung neuartiger Übergangsmetall-chelate von 1,1-Dialkyl-3-benzoyl-thioharnstoffen. J. Prakt. Chem. 1975, 317, 829–839. [Google Scholar] [CrossRef]
- Koch, K.R. New chemistry with old ligands: N-alkyl- and N, N-dialkyl-N′-acyl(aroyl)thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coord. Chem. Rev. 2001, 216–217, 473–488. [Google Scholar] [CrossRef]
- Cambridge Crystallographic Database, version 5.44; Cambridge Crystallographic Data Centre: Cambridge, UK, 2023; Available online: https://www.ccdc.cam.ac.uk (accessed on 25 November 2024).
- Schwade, V.D.; Kirsten, L.; Hagenbach, A.; Schulz Lang, E.; Abram, U. Indium(III), lead(II), gold(I) and copper(II) complexes with isophthaloylbis(thiourea) ligands. Polyhedron 2013, 55, 155–161. [Google Scholar] [CrossRef]
- Koch, K.R.; Bourne, S.A.; Coetzee, A.; Miller, J. Self-assembly of 2∶2 and 3∶3 metallamacrocyclic complexes of platinum(II) with symmetrical, bipodal N′,N′,N‴N‴-tetraalkyl-N,N″-phenylenedicarbonylbis(thiourea). J. Chem. Soc. Dalton Trans. 1999, 18, 3157–3161. [Google Scholar] [CrossRef]
- Rodenstein, A.; Griebel, J.; Richter, R.; Kirmse, R. Synthese, Struktur und EPR-Untersuchungen von binuklearen Bis(N,N,N‴,N‴-tetraisobutyl-N′,N″-isophthaloylbis(thioureato))-Komplexen des CuII, NiII, ZnII, CdII und PdII. Z. Anorg. Allg. Chem. 2008, 634, 867–874. [Google Scholar] [CrossRef]
- Koch, R.K.; Hallale, O.; Bourne, S.A.; Miller, J.; Bacsa, J. Self-assembly of 2:2 metallomacrocyclic complexes of NiII and PdII with 3,3,3′,3′-tetraalkyl-1,1′-isophthaloylbis(thioureas). Crystal and molecular structures of cis-[Pd(L2-S,O)]2 and the adducts of the corresponding NiII complexes: [Ni(L1-S,O)(pyridine)2]2 and [Ni(L1-S,O)(4-dimethylaminopyridine)2]2. J. Mol. Struct. 2001, 561, 185–196. [Google Scholar]
- Schwade, V.D.; Teixeira, E.I.; dos Santos, F.A.; Bortolotto, T.; Tirloni, B.; Abram, U. Fluorescence studies and photocatalytic application for hydrogen production of ZnII and CdII complexes with isophthaloylbis(thioureas). New J. Chem. 2020, 44, 19598–19611. [Google Scholar] [CrossRef]
- Westra, A.N.; Bourne, S.A.; Koch, K.R. First metallamacrocyclic complexes of Pt(iv) with 3,3,3′,3′-tetraalkyl-1,1′-phenylenedicarbonylbis(thioureas): Synthesis by direct or electrolytic oxidative addition of I2, Br2 and Cl2. Dalton Trans. 2005, 17, 2916–2924. [Google Scholar] [CrossRef] [PubMed]
- Keskin, E.; Solmaz, U.; Gumus, I.; Arslan, H. Di- and tetra-nuclear oxorhenium(V) complexes of benzoylthiourea derivative ligands: Synthesis, structural characterization, and catalytic applications. Polyhedron 2022, 219, 115786. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Schwalm, C.S.; Casagrande, G.A.; Tirloni, B.; Schwade, V.D. Binuclear isophthaloylbis(N,N-diphenylthioureate) transition metal complexes: Synthesis, spectroscopic, thermal and structural characterization. J. Mol. Struct. 2020, 1210, 127999. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Pham, C.T.; Rodenstein, A.; Kirmse, R.; Abram, U. Bipodal Acylthiourea Ligands as Building Blocks for Bi-, Tetra-, and Polynuclear Oxorhenium(V) Complexes. Inorg. Chem. 2011, 50, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Selvakumaran, N.; Bhuvanesh, N.S.; Karvembu, R. Self-assembled Cu(ii) and Ni(ii) metallamacrocycles formed from 3,3,3′,3′-tetrabenzyl-1,1′-aroylbis(thiourea) ligands: DNA and protein binding studies, and cytotoxicity of trinuclear complexes. Dalton Trans. 2014, 43, 16395–16410. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Sieler, J.; Köhler, R.; Hoyer, E.; Beyer, L.; Hansen, L.K. Kristall- und Molekülstruktur eines neuartigen Trimetallamacrocyclus: Cyclo-Tri[nickel-μ-[1,1,1′,1′-tetraethyl-3,3′-terephthaloyl-bis-thioureato(2-)-S,O:O′,S′]]. Z. Anorg. Allg. Chem. 1989, 578, 191–197. [Google Scholar] [CrossRef]
- Sucena, S.F.; Demirer, T.I.; Baitullina, A.; Hagenbach, A.; Grewe, J.; Spreckelmeyer, S.; März, J.; Barkleit, A.; da Silva Maia, P.I.; Nguyen, H.H.; et al. Gold-based Coronands as Hosts for M3+ Metal Ions: Ring Size Matters. Molecules 2023, 28, 5421. [Google Scholar] [CrossRef] [PubMed]
- Santos dos Santos, S.; Schwade, V.D.; Schulz Lang, E.; Pham, C.T.; Roca Jungfer, M.; Abram, U.; Nguyen, H.H. Organotellurium(II) and -(IV) Compounds with Picolinoylbis(thioureas): From Simple 1:1 Adducts to Multimetallic Aggregates. Eur. J. Inorg. Chem. 2024, 27, e202400344. [Google Scholar] [CrossRef]
- Pham, C.T.; Roca Jungfer, M.; Abram, U. Indium(III) {2}-Metallacryptates Assembled from 2,6-Dipicolinoyl-bis(N,N-diethylthiourea. New J. Chem. 2020, 44, 3672–3680. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Jegathesh, J.J.; Takiden, A.; Hauenstein, D.; Pham, C.T.; Le, C.D.; Abram, U. 2,6-Dipicolinoylbis(N,N-dialkylthioureas) as versatile building blocks for oligo- and polynuclear architectures. Dalton Trans. 2016, 45, 10771–10779. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Abram, U.; Pham, C.T. Ammonium-Iron(III) metallacryptate inclusion complexes based on Aroylbis(N,N-diethylthioureas): Synthesis and structure. Vietnam J. Chem. Int. Ed. 2022, 60, 622–628. [Google Scholar]
- Pham, C.T.; Nguyen, T.H.; Trieu, T.N.; Matsumoto, K.; Nguyen, H.H. Syntheses, Structures, and Magnetism of Trinuclear Zn2Ln Complexes with 2,6-Dipicolinoylbis(N,N-diethylthiourea). Z. Anorg. Allg. Chem. 2019, 645, 1072–1078. [Google Scholar] [CrossRef]
- Pham, C.T.; Nguyen, H.H.; Hagenbach, A.; Abram, U. Iron(III) Metallacryptand and Metallacryptate Assemblies Derived from Aroylbis(N,N-diethylthioureas). Inorg. Chem. 2017, 56, 11406–11416. [Google Scholar] [CrossRef]
- Jesudas, J.J.; Pham, C.T.; Hagenbach, A.; Abram, U.; Nguyen, H.H. Trinuclear ‘CoIILnIIICoII’ Complexes (Ln = La, Ce, Nd, Sm, Gd, Dy, Er and Yb) with 2,6-Dipicolinoyl-bis(N,N-diethylthiourea)—Synthesis, Structures and Magnetism. Inorg. Chem. 2020, 58, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Sucena, S.F.; Pham, T.T.; Hagenbach, A.; Pham, C.T.; Abram, U. Structural Diversity of Alkaline Earth Centered Gold(I) Metallacoronates. Eur. J. Inorg. Chem. 2020, 2020, 4341–4349. [Google Scholar] [CrossRef]
- Pham, C.T.; Nguyen, T.H.; Matsumoto, K.; Nguyen, H.H. CuI/CuII Complexes with Dipicolinoylbis(N,N-diethylthiourea): Structures, Magnetism, and Guest Ion Exchange. Eur. J. Inorg. Chem. 2019, 38, 4142–4146. [Google Scholar] [CrossRef]
- Le, C.D.; Pham, C.T.; Nuyen, H.H. Zinc(II) {2}-Metallacoronates and {2}-Metallacryptates based on Dipicolinoylbis(N,N-diethylthiourea): Structures and Biological Activities. Polyhedron 2019, 173, 114143. [Google Scholar] [CrossRef]
- De Oliveira, M.I.; Chuy, G.P.; Vizzotto, B.S.; Schulz Lang, E.; dos Santos, S.S. Synthesis, characterization and biological applications of bismuth(III) complexes with aroylthiourea ligands. Inorg. Chim. Acta 2020, 512, 119871. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Noufele, C.N.; Hagenbach, A.; Abram, U. Uranyl Complexes with Aroylbis(N,N-dialkylthioureas). Inorg. Chem. 2018, 57, 12255–12269. [Google Scholar] [CrossRef] [PubMed]
- Noufele, C.N.; Schulze, D.; Roca Jungfer, M.; Hagenbach, A.; Abram, U. Bimetallic Uranium Complexes with 2,6-Dipicolinoylbis(N,N-dialkylthioureas). Molecules 2024, 29, 5001. [Google Scholar] [CrossRef] [PubMed]
- Noufele, C.N.; Roca Jungfer, M.; Nguyen, H.H.; Hagenbach, A.; Abram, U. Uranium-mediated Thiourea/Urea Conversion on Chelating Ligands. Inorganics 2024, 12, 295. [Google Scholar] [CrossRef]
- Ren, W.; Song, H.; Zi, G.; Walter, M.D. A bipyridyl thorium metallocene: Synthesis, structure and reactivity. Dalton Trans. 2012, 41, 5965–5973. [Google Scholar] [CrossRef]
- Ramitha, D.M.; Rupasinghe, Y.P.; Baxter, M.R.; Gupta, H.; Poore, A.T.; Higgins, R.F.; Zeller, R.F.; Tian, S.; Schelter, E.J.; Bart, S.C. Actinide–Oxygen Multiple Bonds from Air: Synthesis and Characterization of a Thorium Oxo Supported by Redox-Active Ligands. J. Am. Chem. Soc. 2022, 144, 17423–17431. [Google Scholar]
- Ringgold, M.; Wu, W.; Stuber, M.; Komienko, A.Y.; Emge, T.J.; Brennan, J.G. Monomeric thorium chalcogenolates with bipyridine and terpyridine ligands. Dalton Trans. 2018, 47, 14652–14661. [Google Scholar] [CrossRef] [PubMed]
- Garner, M.E.; Hohloch, S.; Maron, L.; Arnold, J. A New Supporting Ligand in Actinide Chemistry Leads to Reactive Bis(NHC)borate-Supported Thorium Complexes. Organometallics 2016, 35, 2915–2922. [Google Scholar] [CrossRef]
- Mora, E.; Maria, L.; Biswas, B.; Camp, C.; Santos, I.C.; Pecaut, J.; Cruz, A.; Carretas, J.M.; Marcalo, J.; Mazzanti, M. Diamine Bis(phenolate) as Supporting Ligands in Organoactinide(IV) Chemistry. Synthesis, Structural Characterization, and Reactivity of Stable Dialkyl Derivatives. Organometallics 2013, 32, 1409–1422. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, E.; Fang, B.; Hou, G.; Zi, G.; Walter, M.D. Preparation of (η5-C5Me5)2Th(bipy) and Its Reactivity toward Small Molecules. Organometallics 2016, 35, 2129–2139. [Google Scholar] [CrossRef]
- Garner, M.E.; Lohrey, T.D.; Hohloch, S.; Arnold, J. Synthesis, characterization, and epoxide ring-opening reactivity of thorium-NHC-bpy complexes. J. Organomet. Chem. 2017, 857, 10–15. [Google Scholar] [CrossRef]
- Ren, W.; Zi, G.; Walter, M.D. Synthesis, Structure, and Reactivity of a Thorium Metallocene Containing a 2,2′-Bipyridyl Ligand. Organometallics 2012, 31, 672–679. [Google Scholar] [CrossRef]
- Berthet, J.-C.; Tuery, P.; Ephritikhine, M. Thorocene adducts of the neutral 2,2′-bipyridine and its radical anion. Synthesis and crystal structures of [Th(η8-C8H8)2(κ2-bipy)] and [Th(μ-η8:η5-C8H8)2(κ2-bipy)K(py)2]∞. Comptes Rendus Chim. 2014, 17, 526–533. [Google Scholar] [CrossRef]
- Lu, E.; Sajjad, S.; Berryman, V.E.J.; Wooles, A.J.; Kaltsoyannis, N.; Liddle, S.T. Emergence of the structure-directing role of f-orbital overlap-driven covalency. Nat. Commun. 2019, 10, 634. [Google Scholar] [CrossRef]
- Xu, H.; Lv, Z.-L.; Chen, X.; Xi, Z.; Wie, J. N-Aryloxide-Amidinate Thorium Complexes. Inorg. Chem. 2024, 63, 5530–5540. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lv, L.; Liu, Y.; Chen, B.; Liu, J.; Li, X.; Luo, S. Complexes of Th(iv) with neutral O–N–N–O hybrid ligands: A thermodynamic and crystallographic study. Dalton Trans. 2021, 50, 705–714. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wu, Y.; Li, J.; Hu, B.; Ci, Y.; Yuan, L.; Feng, W. Selective Complexation and Separation of Uranium(VI) from Thorium(IV) with New Tetradentate N,O-Hybrid Diamide Ligands: Synthesis, Extraction, Spectroscopy, and Crystallographic Studies. Inorg. Chem. 2023, 62, 4922–4933. [Google Scholar] [CrossRef] [PubMed]
- Borisova, N.E.; Fedoseev, A.M.; Kostikova, G.V.; Matveev, P.I.; Starostin, L.Y.; Sokolova, M.N.; Evsiunina, M.V. Solvent Extraction and Conformation Rigidity: Actinide(IV) and Actinide(VI) Come Together. Inorg. Chem. 2022, 61, 20774–20784. [Google Scholar] [CrossRef] [PubMed]
- Knuuttila, P.; Knuuttila, H.; Hennig, H.; Beyer, L. The Crystal and Molecular Structure of Bis(1,1-diethyl-3-benzoylthioureato)nickel(II). Acta Chem. Scand. 1982, 36, 541–545. [Google Scholar] [CrossRef]
- Selvakumaran, N.; Pratheepkumar, A.; Ng, S.W.; Tiekink, E.R.T.; Karvembu, R. Synthesis, structural characterization and cytotoxicity of nickel(II) complexes containing 3,3-dialkyl/aryl-1-benzoylthiourea ligands. Inorg. Chim. Acta 2013, 404, 82–87. [Google Scholar] [CrossRef]
- Hallale, O.; Bourne, S.A.; Koch, K.R. Metallamacrocyclic complexes of Ni(ii) with 3,3,3′,3′-tetraalkyl-1,1′-aroylbis(thioureas): Crystal and molecular structures of a 2:2 metallamacrocycle and a pyridine adduct of the analogous 3:3 complex. CrystEngComm 2005, 7, 161–166. [Google Scholar] [CrossRef]
- Bourne, S.A.; Hallale, O.; Koch, K.R. Hydrogen-Bonding Networks in a Bipodal Acyl-thiourea and Its NiII 2:2 Metallamacrocyclic Complex. Cryst. Growth Des. 2005, 5, 307–312. [Google Scholar] [CrossRef]
- Ruiz-Martínez, A.; Alvarez, S. Stereochemistry of Compounds with Coordination Number Ten. Chem. Eur. J. 2009, 15, 7470–7480. [Google Scholar] [CrossRef] [PubMed]
- Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous Symmetry Measures. J. Am Chem. Soc. 1992, 114, 7843–7851. [Google Scholar] [CrossRef]
- Pinsky, M.; Avnir, D. Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorg. Chem. 1998, 37, 5575–5582. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S. Polyhedra in (inorganic) chemistry. Dalton Trans. 2005, 13, 2209–2233. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. Shape—Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, version 2.1; University of Barcelona: Barcelona, Spain, 2010; Available online: https://www.ee.ub.edu/downloads/ (accessed on 29 November 2024).
- Sheldrick, G. SADABS, version 2014/5; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef]
Th–O5 | 2.529(4) | Th–N26 | 2.715(5) | Th–N36 | 2.703(5) | Th–O15 | 2.354(4) | Th–O81 | 2.433(4) |
Th–O45 | 2.508(4) | Th–N66 | 2.728(5) | Th–N76 | 2.684(5) | Th–O55 | 2.388(4) | Th–O86 | 2.322(5) |
Ni–O5 | 2.053(4) | Ni–O45 | 2.062(5) | Ni–S1 | 2.386(2) | Ni–S41 | 2.337(2) | Ni–O82 | 2.051(5) |
Ni–O89 | 2.111(5) | S1–C2 | 1.716(8) | C2–N3 | 1.371(9) | C2–N6 | 1.32(1) | N3–C4 | 1.292(9) |
C4–O5 | 1.289(8) | C14–O15 | 1.290(7) | C14–N13 | 1.290(7) | N13–C12 | 1.396(9) | C12–S11 | 1.675(7) |
C12–N16 | 1.339(9) | S41–C42 | 1.703(7) | C42–N43 | 1.371(9) | C42–N46 | 1.34(1) | N43-C44 | 1.288(9) |
C44–O45 | 1.296(8) | S51–C52 | 1.686(8) | C52–N53 | 1.39(1) | C52–N56 | 1.33(1) | N53–C54 | 1.294(9) |
C54–O55 | 1.291(8) | O82–C83 | 1.245(8) | C83–O82 | 1.245(8) | O86–C87 | 1.252(9) | C87–O85 | 1.227(9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noufele, C.N.; Pham, C.T.; Abram, U. Bis{µ-(2,2′-bipyridine-1κ2N,N′)-(6,6′-dicarbonyl-1κ2O,O′:2κO′)bis(N,N-diethylthioureato-2κS)}(acetato-1κO)(µ-acetato-1κO:2-κO′)(methanol-2κO)thoriumnickel. Molbank 2025, 2025, M1948. https://doi.org/10.3390/M1948
Noufele CN, Pham CT, Abram U. Bis{µ-(2,2′-bipyridine-1κ2N,N′)-(6,6′-dicarbonyl-1κ2O,O′:2κO′)bis(N,N-diethylthioureato-2κS)}(acetato-1κO)(µ-acetato-1κO:2-κO′)(methanol-2κO)thoriumnickel. Molbank. 2025; 2025(1):M1948. https://doi.org/10.3390/M1948
Chicago/Turabian StyleNoufele, Christelle Njiki, Chien Thang Pham, and Ulrich Abram. 2025. "Bis{µ-(2,2′-bipyridine-1κ2N,N′)-(6,6′-dicarbonyl-1κ2O,O′:2κO′)bis(N,N-diethylthioureato-2κS)}(acetato-1κO)(µ-acetato-1κO:2-κO′)(methanol-2κO)thoriumnickel" Molbank 2025, no. 1: M1948. https://doi.org/10.3390/M1948
APA StyleNoufele, C. N., Pham, C. T., & Abram, U. (2025). Bis{µ-(2,2′-bipyridine-1κ2N,N′)-(6,6′-dicarbonyl-1κ2O,O′:2κO′)bis(N,N-diethylthioureato-2κS)}(acetato-1κO)(µ-acetato-1κO:2-κO′)(methanol-2κO)thoriumnickel. Molbank, 2025(1), M1948. https://doi.org/10.3390/M1948