Diethyl 3-(4-Bromobenzoyl)-7-(4-pyridyl)indolizine-1,2-dicarboxylate
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Commentary
2.2. Hirshfeld Surface Analysis
3. Materials and Methods
X-Ray Crystallography
4. Experimental
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borrows, E.T.; Holland, D.O. The chemistry of the pyrrocolines and the octahydropyrrocolines. Chem. Rev. 1948, 42, 611–643. [Google Scholar] [CrossRef]
- Swinbourne, F.J.; Hunt, J.H.; Klinkert, G. Advances in Indolizine Chemistry. Adv. Heterocycl. Chem. 1979, 23, 103–170. [Google Scholar] [CrossRef]
- Singh, G.S.; Mmatli, E.E. Recent progress in synthesis and bioactivity studies of indolizines. Eur. J. Med. Chem. 2011, 46, 5237–5257. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kumar, V. Indolizine: A biologically active moiety. Med. Chem. Res. 2014, 23, 3593–3606. [Google Scholar] [CrossRef]
- Sadowski, B.; Klajn, J.; Gryko, D.T. Recent advances in the synthesis of indolizines and their π-expanded analogues. Org. Biomol. Chem. 2016, 14, 7804–7828. [Google Scholar] [CrossRef]
- Badaro, J.S.A.; Godlewski, B.; Gryko, D.T. Advances in the synthesis of indolizines and their π-expanded analogues: Update. Org. Chem. Front. 2025, 12, 2860–2907. [Google Scholar] [CrossRef]
- Michael, J.P. Chapter One—Simple Indolizidine and Quinolizidine Alkaloids. In The Alkaloids: Chemistry and Biology; Knölker, H.-J., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 75, pp. 1–498. [Google Scholar] [CrossRef]
- Zhang, J.; Morris-Natschke, S.L.; Ma, D.; Shang, X.F.; Yang, C.J.; Liu, Y.Q.; Lee, K.H. Biologically Active Indolizidine Alkaloids. Med. Res. Rev. 2021, 41, 928–960. [Google Scholar] [CrossRef]
- Ratmanova, N.K.; Andreev, I.A.; Leontiev, A.V.; Momotova, D.; Novoselov, A.M.; Ivanova, O.A.; Trushkov, I.V. Strategic Approaches to the Synthesis of Pyrrolizidine and Indolizidine Alkaloids. Tetrahedron 2020, 76, 131031. [Google Scholar] [CrossRef]
- Padwa, A.; Austin, D.J.; Precedo, L.; Zhi, L. Cycloaddition reactions of pyridinium and related azomethine ylides. J. Org. Chem. 1993, 58, 1144–1150. [Google Scholar] [CrossRef]
- Dumitrascu, F.; Vasilescu, M.; Draghici, C.; Caproiu, M.T.; Barbu, L.; Dumitrescu, D.G. New fluorescent indolizines and bisindolizinylethylenes. Arkivoc 2011, 10, 338–350. [Google Scholar] [CrossRef]
- Georgescu, E.; Dumitrascu, F.; Georgescu, F.; Draghici, C.; Barbu, L. A Novel Approach for the Synthesis of 5-Pyridylindolizine Derivatives via 2-(2-Pyridyl)pyridinium Ylides. J. Heterocycl. Chem. 2013, 50, 78–82. [Google Scholar] [CrossRef]
- Caira, M.R.; Popa, M.M.; Draghici, C.; Barbu, L.; Dumitrescu, D.; Dumitrascu, F. 7,8,9,10-Tetrahydropyrrolo [2,1-a]isoquinolines in the search for new indolizine derivatives. Tetrahedron. Lett. 2014, 55, 5635–5638. [Google Scholar] [CrossRef]
- Popa, M.M.; Georgescu, E.; Draghici, C.; Georgescu, F.; Dumitrescu, D.; Dumitrascu, F. Coumarin substituted pyrrolo-fused heterocyclic systems by 1,3-dipolar cycloadditon reactions. Monatsh. Chem. 2015, 146, 2029–2040. [Google Scholar] [CrossRef]
- Albota, F.; Caira, M.R.; Draghici, C.; Dumitrascu, F.; Dumitrescu, D.E. Sydnone C-4 heteroarylation with an indolizine ring via Chichibabin indolizine synthesis. Beilstein J. Org. Chem. 2016, 12, 2503–2510. [Google Scholar] [CrossRef] [PubMed]
- Olaru, A.M.; Vasilache, V.; Danac, R.; Mangalagiu, I.I. Antimycobacterial activity of nitrogen heterocycles derivatives: 7-(pyridine-4-yl)-indolizine derivatives. Part VII. J. Enz. Inhib. Med. Chem. 2017, 32, 1291–1298. [Google Scholar] [CrossRef]
- Bedard, N.; Foley, C.; Davis, G.J.; Jewett, J.C.; Hulme, C. Sequential Knoevenagel [4+1] Cycloaddition–Condensation–Aza-Friedel–Crafts Intramolecular Cyclization: A 4-Center-3-Component Reaction Toward Tunable Fluorescent Indolizine Tetracycles. J. Org. Chem. 2021, 86, 17550–17559. [Google Scholar] [CrossRef]
- Mao, Z.; Li, X.; Lin, X.; Lu, P.; Wang, Y. One-pot multicomponent synthesis of polysubstituted indolizines. Tetrahedron 2012, 68, 85–91. [Google Scholar] [CrossRef]
- Vieira, M.M.; Dalberto, B.T.; Coelho, F.L.; Schneider, P.H. Ultrasound-promoted regioselective synthesis of chalcogeno-indolizines by a stepwise 1,3-dipolar cycloaddition. Ultras. Sonochem. 2020, 68, 105228. [Google Scholar] [CrossRef]
- Golmohammadi, F.; Osmani, C.; Rominger, F.; Balalaie, S. Synthesis of Functionalized Indolizines through 1,3-Dipolar Cycloaddition of Zwitterionic Ketenimines and Pyridinium Salts. J. Org. Chem. 2025, 90, 5973–5985. [Google Scholar] [CrossRef]
- Arroio, T.R.; Bertallo, C.R.; Caires, F.J.; Naal, R.M.; Clososki, G.C. Synthesis of novel π-extended 2,5-disubstituted indolizines and their absorption and fluorescence properties. J. Mol. Struct. 2024, 1315, 138980. [Google Scholar] [CrossRef]
- Belguedj, R.; Lamera, E.; Bouraiou, A.; Bouaziz, Z.; Chibani, A. Methyl 3-(Quinolin-2-yl)indolizine-1-carboxylate. Molbank 2016, 2016, M883. [Google Scholar] [CrossRef]
- Bonte, S.; Ghinea, I.O.; Dinica, R.; Baussanne, I.; Demeunynck, M. Investigation of the Pyridinium Ylide—Alkyne Cycloaddition as a Fluorogenic Coupling Reaction. Molecules 2016, 21, 332. [Google Scholar] [CrossRef]
- Popa, M.M.; Răducă, M.; Man, I.C.; Dumitrascu, F. The Role of Hydrogen Bond Interactions in Crystal Formation of Pyrrolo-Azines Alcohols. Crystals 2025, 15, 78. [Google Scholar] [CrossRef]
- Vasilescu, M.; Bandula, R.; Dumitrascu, F.; Lemmetyinen, H. Spectrophotometric Characteristics of New Pyridylindolizine Derivatives Solutions. J. Fluoresc. 2006, 16, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.V.; Druta, I.D.; Oeser, J.J.; Muller, T.T. A Novel Coupling 1,3-Dipolar Cycloaddition Sequence as a Three-Component Approach to Highly Fluorescent Indolizines. Helv. Chim. Acta 2005, 88, 1798–1912. [Google Scholar] [CrossRef]
- Danac, R.; Mangalagiu, I.I. Antimycobacterial activity of nitrogen heterocycles derivatives: Bipyridine derivatives. Part III. Eur. J. Med. Chem. 2014, 74, 664–670. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Refcodes of the analysed indolizine derivatives: AFUZUZ, ASULIJ, BETPEY, DOMGUK, ETIMAV, ETOBOE, KARVOS, LOPMEK, LUPLAJ, NENDOC, SOHBOH, TECPEX, UCAHIP. Available online: https://www.ccdc.cam.ac.uk/structures/ (accessed on 30 May 2025).
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Smarun, A.; Jevtovic, V.; Ganguly, R. Synthesis, Structure and Hirshfeld Surface Analysis of Phosphine–Imidazolium Salt. Molbank 2020, 2020, M1141. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlis Pro Software System; CrysAlis Pro v. 1.171.38.46; Rigaku Corporation: Oxford, UK, 2015. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | 4 | TOMDUW | QATJAX |
---|---|---|---|
(Py)N···H-C (Å) | 2.464 (3) | 2.734 (3) | 2.737 (2) |
(Py)N-H-C (°) | 177.3 (3) | 146.5 (2) | 172.9 (2) |
C-H···O(carbonyl) (Å) | 2.796 (2) | 2.706 (2) | 2.741 (2) |
C-H-O(carbonyl) (°) | 171.6 (2) | 144.9 (2) | 145.2 (2) |
π-π interactions—centroid-centroid (Å) | 3.86 | 3.78 | - |
Py-indolizine torsion angle (°) | 8.4 (4) | 0.6 (4) | 22.7 (3) |
Reference | This work | [26] | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristea, M.; Răducă, M.; Gdaniec, M.; Shova, S.; Banu, N.D.; Dumitrascu, F. Diethyl 3-(4-Bromobenzoyl)-7-(4-pyridyl)indolizine-1,2-dicarboxylate. Molbank 2025, 2025, M2032. https://doi.org/10.3390/M2032
Cristea M, Răducă M, Gdaniec M, Shova S, Banu ND, Dumitrascu F. Diethyl 3-(4-Bromobenzoyl)-7-(4-pyridyl)indolizine-1,2-dicarboxylate. Molbank. 2025; 2025(3):M2032. https://doi.org/10.3390/M2032
Chicago/Turabian StyleCristea, Mihaela, Mihai Răducă, Maria Gdaniec, Sergiu Shova, Nicoleta Doriana Banu, and Florea Dumitrascu. 2025. "Diethyl 3-(4-Bromobenzoyl)-7-(4-pyridyl)indolizine-1,2-dicarboxylate" Molbank 2025, no. 3: M2032. https://doi.org/10.3390/M2032
APA StyleCristea, M., Răducă, M., Gdaniec, M., Shova, S., Banu, N. D., & Dumitrascu, F. (2025). Diethyl 3-(4-Bromobenzoyl)-7-(4-pyridyl)indolizine-1,2-dicarboxylate. Molbank, 2025(3), M2032. https://doi.org/10.3390/M2032