5-((3′,5′-Dibromo-[2,2′-bithiophen]-5-yl)methyl)-3-ethyl-2-thioxothiazolidin-4-one∙Br2 (1:1)
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. General
3.2. Synthesis of Compound 1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawatzki-Park, M.; Wang, S.; Kleemann, H.; Leo, K. Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices. Chem. Rev. 2023, 123, 8232–8250. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Wang, L.; Yu, G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. Adv. Mater. 2023, 35, 2210772. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Chen, Y. Optical Waveguides in Organic Crystals of Polycyclic Arenes. Adv. Opt. Mater. 2021, 9, 2002264. [Google Scholar] [CrossRef]
- Podda, E.; Arca, M.; Pintus, A.; Lippolis, V.; Coles, S.J.; Orton, J.B.; Porcu, S.; Ricci, P.C.; Aragoni, M.C. Ultra-Low Optical Loss in Single Crystal Waveguides of Fluorene/Fluorenone CdII Coordination Polymers. JACS Au 2025, 5, 727–739. [Google Scholar] [CrossRef]
- Gramec, D.; Peterlin Mašič, L.; Sollner Dolenc, M. Bioactivation Potential of Thiophene-Containing Drugs. Chem. Res. Toxicol. 2014, 27, 1344–1358. [Google Scholar] [CrossRef]
- Perepichka, I.F.; Perepichka, D.F. (Eds.) Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics; Wiley-VCH: Weinheim, Germany, 2009; Volume 1–2, ISBN 978-0-470-05732-2. [Google Scholar]
- Podda, E.; Coles, S.J.; Horton, P.N.; Lickiss, P.D.; Bull, O.S.; Orton, J.B.; Pintus, A.; Pugh, D.; Aragoni, M.C.; Davies, R.P. First Example of Solid-State Luminescent Borasiloxane-Based Chiral Helices Assembled through N−B Bonds. Dalton Trans. 2021, 50, 3782–3785. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. Engl. 2002, 41, 48–76. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Bryce, D.L.; Desiraju, G.R.; Frontera, A.; Legon, A.C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P.; et al. Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure Appl. Chem. 2019, 91, 1889–1892. [Google Scholar] [CrossRef]
- Vogel, L.; Wonner, P.; Huber, S.M. Chalcogen Bonding: An Overview. Angew. Chem. Int. Ed. 2019, 58, 1880–1891. [Google Scholar] [CrossRef]
- Podda, E.; Arca, M.; Aragoni, M.C.; Caltagirone, C.; Lippolis, V.; Pintus, A.; Paixão, D.B.; Soares, E.G.O.; Schneider, P.H. Synergistic Interplay between Intermolecular Halogen and Chalcogen Bonds in the Dihalogen Adducts of 2,5-Bis(Pyridine-2-Yl)Tellurophene: Reactivity Insights and Structural Trends. Inorg. Chem. 2025, 64, 10972–10988. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T.; Resnati, G. The σ-hole revisited. Phys. Chem. Chem. Phys. 2017, 19, 32166–32178. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. σ-hole Interactions: Perspectives and Misconception. Crystals 2017, 7, 212. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Lippolis, V.; Pintus, A.; Torubaev, Y.; Podda, E. A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds. Molecules 2023, 28, 3133. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Cherchi, M.F.; Lippolis, V.; Pintus, A.; Podda, E.; Slawin, A.M.Z.; Woollins, J.D.; Arca, M. Self-Assembly of Supramolecular Architectures Driven by σ-Hole Interactions: A Halogen-Bonded 2D Network Based on a Diiminedibromido Gold(III) Complex and Tribromide Building Blocks. Molecules 2022, 27, 6289. [Google Scholar] [CrossRef]
- Sanna, A.L.; Acca, S.; Podda, E.; Mascia, A.; Pintus, A.; Aragoni, M.C.; Lippolis, V.; Ricci, C.; Cosseddu, P.; Arca, M.; et al. Unveiling the significance of adduct formation between thiocarbonyl Lewis donors and diiodine for the structural organization of rhodanine-based small molecule semiconductors. J. Mater. Chem. C 2024, 12, 11352–11360. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 2023, 9, 46–62. [Google Scholar] [CrossRef]
- Li, X.; Kong, X.; Sun, G.; Li, Y. Organic small molecule acceptor materials for organic solar cells. eScience 2023, 3, 100171. [Google Scholar] [CrossRef]
- Fróhlich, H.; Kalt, W. Base-Catalyzed Halogen Dance Reaction at Thiophenes: A Spectroscopic Reinvestigation of the Synthesis of 2,5-Dibromo-3-(trimethylsilyl)thiophene. J. Org. Chem. 1990, 55, 2993–2995. [Google Scholar] [CrossRef]
- Saab, M.; Nelson, D.J.; Leech, M.C.; Lam, K.; Nolan, S.P.; Nahra, F.; Van Hecke, K. Reactions of N-heterocyclic carbene-based chalcogenoureas with halogens: A diverse range of outcomes. Dalton Trans. 2022, 51, 3721–3733. [Google Scholar] [CrossRef]
- Koskinen, L.; Jääskeläinen, S.; Hirva, P.; Haukka, M. Tunable Interaction Strength and Nature of the S···Br Halogen Bonds in [(Thione)Br2] Systems. Cryst. Growth Des. 2015, 15, 1160–1167. [Google Scholar] [CrossRef]
- Vaughan, G.B.M.; Mora, A.J.; Fitch, A.N.; Gates, P.N.; Muir, A.S. A high resolution powder X-ray diffraction study of the products of reaction of dimethyl sulfide with bromine; crystal and molecular structures of (CH3)2SBrn (n = 2, 2.5 or 4). J. Chem. Soc. Dalton Trans. 1999, 79–84. [Google Scholar] [CrossRef]
- Steinfeld, G.; Lozan, V.; Krüger, H.J.; Kersting, B. Trapping of a Thiolate→Dibromine Charge-Transfer Adduct by a Macrocyclic Dinickel Complex and Its Conversion into an Arenesulfenyl Bromide Derivative. Angew. Chem. Int. Ed. 2009, 48, 1954–1957. [Google Scholar] [CrossRef] [PubMed]
- Aragoni, M.C.; Arca, M.; Devillanova, F.A.; Isaia, F.; Lippolis, V. Adducts of S/Se Donors with Dihalogens as a Source of Information for Categorizing the Halogen Bonding. Cryst. Growth Des. 2012, 12, 2769–2779. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta. Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; Wiley-VCH: New York, NY, USA, 2001; ISBN 978-3-527-30372-4. [Google Scholar]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 (Rev. B01); Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Arca, M. GaussMem. 2024. Available online: https://massimiliano-arca.itch.io/gaussmem (accessed on 15 July 2025).
- Reed, A.E.L.; Curtis, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor View-point. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podda, E.; Acca, S.; Aragoni, M.C.; Lippolis, V.; Pintus, A.; Arca, M.; Sforazzini, G. 5-((3′,5′-Dibromo-[2,2′-bithiophen]-5-yl)methyl)-3-ethyl-2-thioxothiazolidin-4-one∙Br2 (1:1). Molbank 2025, 2025, M2047. https://doi.org/10.3390/M2047
Podda E, Acca S, Aragoni MC, Lippolis V, Pintus A, Arca M, Sforazzini G. 5-((3′,5′-Dibromo-[2,2′-bithiophen]-5-yl)methyl)-3-ethyl-2-thioxothiazolidin-4-one∙Br2 (1:1). Molbank. 2025; 2025(3):M2047. https://doi.org/10.3390/M2047
Chicago/Turabian StylePodda, Enrico, Simone Acca, Maria Carla Aragoni, Vito Lippolis, Anna Pintus, Massimiliano Arca, and Giuseppe Sforazzini. 2025. "5-((3′,5′-Dibromo-[2,2′-bithiophen]-5-yl)methyl)-3-ethyl-2-thioxothiazolidin-4-one∙Br2 (1:1)" Molbank 2025, no. 3: M2047. https://doi.org/10.3390/M2047
APA StylePodda, E., Acca, S., Aragoni, M. C., Lippolis, V., Pintus, A., Arca, M., & Sforazzini, G. (2025). 5-((3′,5′-Dibromo-[2,2′-bithiophen]-5-yl)methyl)-3-ethyl-2-thioxothiazolidin-4-one∙Br2 (1:1). Molbank, 2025(3), M2047. https://doi.org/10.3390/M2047