Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode
Abstract
:1. Introduction
2. Experimental
2.1. Electrode Preparation and Characterization
2.2. Detection Experiments
3. Results and Discussion
3.1. Morphostructural and Electrical Characterization
3.2. Detection Results
Individual Detection of DCF and IBP on HKUST-CNF Electrode
- −0.2 V for the time duration of 0.5 s, which assumes assurance of electrode preconditioning;
- +0.8 V for the time duration of 0.5 s, which is characterstic of DCF oxidation;
- +1.25 V for the time duration of 0.1 s, which is characteristic of IBP detection;
- +0.02 V for 0.5 s, corresponding to copper oxidation.
- −0.20 V for 0.5 s, which assures electrode preconditioning ;
- +1.50 V for 0.2 s, which is characterstic to DCF oxidation;
- +0.80 V for 0.2 s, which is characteristic to IBP detection;
- +0.02 V for 0.5 s, corresponding to copper oxidation.
- −0.20 V for 0.5 s, which assures electrode preconditioning;
- +1.50 V for 0.1 s, which is characterstic to DCF oxidation;
- +0.80 V for 0.1 s, which is characteristic to IBP detection;
- +0.02 V for 0.5 s, corresponding to copper oxidation.
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sires, I.; Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 2012, 40, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Utrilla, J.; Sanchez-Polo, M.; Ferro-Garcia, M.A.; Prados-Joya, G.; Ocampo-Perez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- Huerta, B.; Rodriguez-Mozaz, S.; Nannou, C.; Nakis, L.; Ruhi, A.; Acuna, V.; Sabater, S.; Barcelo, D. Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Sci. Total Environ. 2016, 540, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Water Security & the Brief Global Water Agenda, A UN-Water Analytical. Available online: http://inweh.unu.edu/portfolio/water-security-global-water-agenda/ (accessed on 20 July 2016).
- Rahi, A.; Karimian, K.; Heli, H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem. 2016, 497, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Iacob, A.; Manea, F.; Vaszilcsin, N.; Picken, S.J.; Schoonman, J. Anodic determination of acetylsalicylic acid at multiwall carbon nanotubes-epoxy composite electrode. Int. J. Electrochem. Sci. 2015, 10, 5661–5672. [Google Scholar]
- Motoc, S.; Remes, A.; Pop, A.; Manea, F.; Schoonman, J. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode. J. Environ. Sci. 2013, 25, 838–847. [Google Scholar] [CrossRef]
- Manea, F.; Ihos, M.; Remes, A.; Burtica, G.; Schoonman, J. Electrochemical determination of diclofenac sodium in aqueous solution on Cu-doped zeolite-expanded graphite-epoxy electrode. Electroanalysis 2010, 22, 2058–2063. [Google Scholar] [CrossRef]
- Shalaby, A.; Hassan, W.S.; Hendawy Hassan, A.M.; Ibrahim, A.M. Electrochemical oxidation behavior of itraconazole at different electrodes and its anodic stripping determination in pharmaceuticals and biological fluids. J. Electroanal. Chem. 2016, 763, 51–62. [Google Scholar] [CrossRef]
- Manea, F.; Motoc, S.; Pop, A.; Schoonman, J. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection. Nanoscale Res. Lett. 2012, 7, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Uslu, B.; Ozkan, S.A. Solid electrodes in electroanalytical chemistry: present applications and prospects for high throughput screening of drug compounds. Comb. Chem. High Throughput Screen. 2007, 10, 495–513. [Google Scholar] [CrossRef]
- Uslu, B.; Ozkan, S.A. Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett. 2007, 40, 817–853. [Google Scholar] [CrossRef]
- Rastogi, P.K.; Ganesan, V.; Azad, U.P. Electrochemical determination of nanomolar levels of isoniazid in pharmaceutical formulation using silver nanoparticles decorated copolymer. Electrochim. Acta 2016, 188, 818–824. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Yang, L.; Yan, S.; Wang, M.; Cheng, D.; Chen, Q.; Dong, Y.; Liu, P.; Cai, W.; et al. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal. Chim. Acta 2015, 899, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, J.; Shi, H.; Guo, X.; Guo, Y.; Zhang, R.; Yuan, B. Redox-active microsized metal-organic framework for efficient nonenzymatic H2O2 sensing. Sens. Actuators B Chem. 2015, 221, 224–229. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, J.; Zhang, R.; Shi, H.; Wang, N.; Li, J.; Ma, F.; Zhang, D. Cu-based metal–organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens. Actuators B Chem. 2016, 222, 632–637. [Google Scholar] [CrossRef]
- Mao, J.; Yang, L.; Yu, P.; Wei, X.; Mao, L. Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochem. Commun. 2012, 19, 29–31. [Google Scholar] [CrossRef]
- Babu, K.F.; Kulandainathan, M.A.; Katsounaros, I.; Rassaei, L.; Burrows, A.D.; Raithby, P.R.; Marken, F. Electrocatalytic activity of BasoliteTMF300 metal-organic-framework structures. Electrochem. Commun. 2010, 12, 632–635. [Google Scholar] [CrossRef]
- Shi, L.; Zhu, X.; Liu, T.; Zhao, H.; Lan, M. Encapsulating Cu nanoparticles into metal-organic frameworks fornonenzymatic glucose sensing. Sens. Actuators B Chem. 2016, 227, 583–590. [Google Scholar] [CrossRef]
- Martinez-Joaristi, A.; Juan-Alcaniz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical synthesis of some archetypical Zn2+, Cu2+ and Al3+ Metal Organic Frameworks. Cryst. Growth Des. 2012, 12, 3489–3498. [Google Scholar] [CrossRef]
- Loerna-Serna, S.; Oliver-Tolentino, M.A.; de Lourdes Lopez-Nunez, A.; Santana-Cruz, A.; Guzman-Vargas, A.; Cabrera-Sierra, R.; Beltran, H.I.; Flores, J. Electrochemical behavior of [Cu3(BTC)2] metal-organic framework: The effect of the method of synthesis. J. Alloy Compd. 2012, 540, 113–120. [Google Scholar] [CrossRef]
- Baciu, A.; Manea, F.; Remes, A.; Motoc, S.; Burtica, G.; Pode, R. Anodic determination of pentachlorophenol from water using carbon nanofiber-based composite electrode. Environ. Eng. Manag. J. 2010, 9, 1555–1562. [Google Scholar]
Technique | Compound | Conditions/E, V/SCE | Sensitivity µA/mg·L−1 | Correlation Coefficient (R2) | LOD a (µg·L−1) | LQ b (µg·L−1) | RSD c (%) |
---|---|---|---|---|---|---|---|
CV | IBP | +1.25 V | 0.827 | 0.984 | 21.70 | 72.00 | 2.05 |
DCF | +0.74 V | 1.361 | 0.996 | 100 | 333 | 0.70 | |
CA | IBP | +1.25 V | 1.201 | 0.987 | 0.13 | 0.46 | 0.81 |
DCF | +0.8 V | 0.050 | 0.954 | 1.59 | 5.29 | 0.52 | |
MPA | IBP | −0.2 V—0.5 s +0.8 V—0.5 s +1.25 V—0.1 s +0.02 V—0.5 s | 4.541 | 0.969 | 4.0 | 1.3 | 1.14 |
DCF | −0.2 V—0.5 s +0.8 V—0.5 s +1.25 V—0.1 s +0.02 V—0.5 s | 0.103 | 0.982 | 2.08 | 6.96 | 1.19 |
Detection | Compound | Technique/Conditions | Sensitivity µA/mgL−1 | Correlation Coefficient (R2) | LOD (µg·L−1) | LQ (µg·L−1) | RSD (%) |
---|---|---|---|---|---|---|---|
Simultaneously | IBP | CA/E = +1.25 V | 1.107 | 0.963 | 8.01 | 27.10 | 0.05 |
MPA/ E1 = −0.2 V—0.5 s; E2 = +0.8 V—0.5 s; E3 = +1.25 V—0.1 s; E4 = +0.02 V—0.5 s | 5.166 | 0.990 | 3.20 | 1.10 | 1.05 | ||
DCF | CA/E = +0.8 V | 0.186 | 0.991 | 49.2 | 164 | 1.24 | |
MPA/ E1= −0.2 V—0.5 s; E2 = +0.8 V—0.5 s; E3 = +1.25 V—0.1 s; E4 = +0.02 V—0.5 s | 0.095 | 0.988 | 11.9 | 39.8 | 2.69 | ||
Selective | IBP | MPA/ E1 = −0.2 V—0.5 s; E2 = +1.5 V—0.2 s; E3 = +0.8 V—0.2 s; E4 = +0.02 V—0.5 s | 3.268 | 0.975 | 6.10 | 2.00 | 1.17 |
DCF | MPA/ E1 = −0.2 V—0.5 s; E2 = +0.8 V—0.1 s; E3 = +1.5 V—0.1 s; E4 = +0.02 V—0.5 s | 1.415 | 0.981 | 3.20 | 10 | 2.11 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motoc, S.; Manea, F.; Iacob, A.; Martinez-Joaristi, A.; Gascon, J.; Pop, A.; Schoonman, J. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode. Sensors 2016, 16, 1719. https://doi.org/10.3390/s16101719
Motoc S, Manea F, Iacob A, Martinez-Joaristi A, Gascon J, Pop A, Schoonman J. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode. Sensors. 2016; 16(10):1719. https://doi.org/10.3390/s16101719
Chicago/Turabian StyleMotoc, Sorina, Florica Manea, Adriana Iacob, Alberto Martinez-Joaristi, Jorge Gascon, Aniela Pop, and Joop Schoonman. 2016. "Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode" Sensors 16, no. 10: 1719. https://doi.org/10.3390/s16101719
APA StyleMotoc, S., Manea, F., Iacob, A., Martinez-Joaristi, A., Gascon, J., Pop, A., & Schoonman, J. (2016). Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode. Sensors, 16(10), 1719. https://doi.org/10.3390/s16101719