Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (810)

Search Parameters:
Keywords = diclofenac

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 659 KB  
Article
Anti-Inflammatory and Immunomodulatory Effects of 2-(3-Acetyl-5-(4-Chlorophenyl)-2-Methyl-1H-Pyrrol-1-yl)-3-Phenylpropanoic Acid
by Hristina Zlatanova-Tenisheva and Stanislava Vladimirova
Biomedicines 2025, 13(8), 2003; https://doi.org/10.3390/biomedicines13082003 - 18 Aug 2025
Viewed by 328
Abstract
Background: The pursuit of novel anti-inflammatory agents with enhanced efficacy and safety is crucial. Pyrrole-containing compounds, integral to many NSAIDs, exhibit promising anti-inflammatory properties. Compound 3f (2-(3-acetyl-5-(4-chlorophenyl)-2-methyl-1H-pyrrol-1-yl)-3-phenylpropanoic acid), a pyrrole derivative structurally inspired by the COX-2 selective inhibitor celecoxib, was evaluated [...] Read more.
Background: The pursuit of novel anti-inflammatory agents with enhanced efficacy and safety is crucial. Pyrrole-containing compounds, integral to many NSAIDs, exhibit promising anti-inflammatory properties. Compound 3f (2-(3-acetyl-5-(4-chlorophenyl)-2-methyl-1H-pyrrol-1-yl)-3-phenylpropanoic acid), a pyrrole derivative structurally inspired by the COX-2 selective inhibitor celecoxib, was evaluated for its anti-inflammatory and immunomodulatory effects. Methods: Anti-inflammatory activity was assessed in a carrageenan-induced paw edema model in Wistar rats. Compound 3f was administered intraperitoneally at 10, 20, and 40 mg/kg, either as a single dose or daily for 14 days. Diclofenac (25 mg/kg) served as the reference. Edema volume was measured by plethysmometry. Systemic inflammation was induced by lipopolysaccharide (LPS), and serum levels of the pro-inflammatory cytokine TNF-α and anti-inflammatory cytokines IL-10 and TGF-β1 were quantified by ELISA following single and repeated administration of compound 3f. Results: Single-dose administration of compound 3f at 20 mg/kg significantly reduced paw edema at 2 h (p = 0.001). After 14 days, all tested doses significantly inhibited paw edema at all time points (p < 0.001). In the LPS-induced systemic inflammation model, repeated treatment with 40 mg/kg of compound 3f significantly decreased serum TNF-α (p = 0.032). TGF-β1 levels increased significantly after both single and repeated doses (p = 0.002 and p = 0.045, respectively), while IL-10 levels remained unaffected. Conclusions: Compound 3f exhibits potent anti-inflammatory activity, particularly after repeated dosing, reflected by reduced local edema and systemic TNF-α suppression. The marked elevation of TGF-β1 indicates a potential immunomodulatory mechanism, selectively modulating cytokine profiles without altering IL-10. These findings support compound 3f as a promising candidate for targeted anti-inflammatory therapy involving cytokine regulation. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Disease: 3rd Edition)
Show Figures

Figure 1

26 pages, 2278 KB  
Review
Advances in Hydrodechlorination Technologies for Diclofenac Removal from Aqueous Systems
by Cristian Castillo, Jorge A. Mora and Maria H. Brijaldo
Molecules 2025, 30(16), 3332; https://doi.org/10.3390/molecules30163332 - 9 Aug 2025
Viewed by 512
Abstract
This review article describes the most recent studies carried out on the catalytic hydrodechlorination (HDC) of Diclofenac (DFC). In this context, the most commonly employed catalytic materials for the removal of DFC from aqueous matrices are reviewed, along with their main performance outcomes. [...] Read more.
This review article describes the most recent studies carried out on the catalytic hydrodechlorination (HDC) of Diclofenac (DFC). In this context, the most commonly employed catalytic materials for the removal of DFC from aqueous matrices are reviewed, along with their main performance outcomes. Various strategies for the HDC of DFC are discussed, including conventional approaches that rely on molecular hydrogen as the electron donor, as well as emerging alternatives based on biocatalytic and electrocatalytic processes. Additionally, the optimized reaction conditions for each catalytic system are discussed, along with relevant kinetic models and mechanistic insights that contribute to a deeper understanding of the HDC of DFC. Future perspectives on the use of catalysts with alternative properties for DFC removal via HDC are also discussed, aiming to highlight potential applications in wastewater treatment and the broader field of heterogeneous catalysis. Full article
Show Figures

Graphical abstract

2 pages, 345 KB  
Correction
Correction: Sarwar et al. Evaluating Antibacterial Efficacy and Biocompatibility of PAN Nanofibers Loaded with Diclofenac Sodium Salt. Polymers 2021, 13, 510
by Muhammad Nauman Sarwar, Azeem Ullah, Md. Kaiser Haider, Nadir Hussain, Sana Ullah, Motahira Hashmi, Muhammad Qamar Khan and Ick Soo Kim
Polymers 2025, 17(16), 2170; https://doi.org/10.3390/polym17162170 - 8 Aug 2025
Viewed by 217
Abstract
In the originally published manuscript [...] Full article
(This article belongs to the Special Issue Polymeric Materials for Biomedical Applications)
Show Figures

Figure 2

29 pages, 3563 KB  
Article
Assessment of Hydrogels for Intra-Articulate Application, Based on Sodium Hyaluronate Doped with Synthetic Polymers and Incorporated with Diclofenac Sodium
by Dorota Wójcik-Pastuszka, Maja Grabara and Witold Musiał
Int. J. Mol. Sci. 2025, 26(15), 7631; https://doi.org/10.3390/ijms26157631 - 6 Aug 2025
Viewed by 479
Abstract
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control [...] Read more.
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control the drug release. This study aimed to design and evaluate an intra-articular hydrogel based sodium hyaluronate, which was modified with an additional polymer to enable the sustained release of the incorporated anti-inflammatory agent, diclofenac sodium (NaDic). Viscosity studies, drug release tests and FTIR−ATR measurements, as well as DSC analysis, were carried out to evaluate the obtained formulations. The viscosity measurements were performed using a rotational viscometer. The drug release was carried out by employing the apparatus paddle over the disk. The concentration of the released drug was obtained spectrophotometrically. The results revealed that the addition of the second polymer to the matrix influenced the dynamic viscosity of the hydrogels. The highest viscosity of (25.33 ± 0.55) × 103 cP was observed when polyacrylic acid (PA) was doped in the formulation. This was due to the hydrogen bond formation between both polymers. The FTIR−ATR investigations and DSC study revealed the hydrogen bond formation between the drug and both polymers. The drug was released the slowest from hydrogel doped with PA and 17.2 ± 3.7% of NaDic was transported to the acceptor fluid within 8 h. The hydrogel based on hyaluronan sodium doped with PA and containing NaDic is a promising formulation for the prolonged and controlled intra-articulate drug delivery of anti-inflammatory agents. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

14 pages, 1282 KB  
Systematic Review
Actinic Cheilitis: A Systematic Review and Meta-Analysis of Interventions, Treatment Outcomes, and Adverse Events
by Matthäus Al-Fartwsi, Anne Petzold, Theresa Steeb, Lina Amin Djawher, Anja Wessely, Anett Leppert, Carola Berking and Markus V. Heppt
Biomedicines 2025, 13(8), 1896; https://doi.org/10.3390/biomedicines13081896 - 4 Aug 2025
Viewed by 535
Abstract
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. [...] Read more.
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. Materials and Methods: A pre-defined protocol was registered in PROSPERO (CRD42021225182). Systematic searches in Medline, Embase, and Central, along with manual trial register searches, identified studies reporting participant clearance rates (PCR) or recurrence rates (PRR). Quality assessment for randomized controlled trials (RCTs) was conducted using the Cochrane Risk of Bias tool 2. Uncontrolled studies were evaluated using the tool developed by the National Heart, Lung, and Blood Institute. The generalized linear mixed model was used to pool proportions for uncontrolled studies. A pairwise meta-analysis for RCTs was applied, using the odds ratio (OR) as the effect estimate and the GRADE approach to evaluate the quality of the evidence. Adverse events were analyzed qualitatively. Results: A comprehensive inclusion of 36 studies facilitated an evaluation of 614 participants for PCR, and 430 patients for PRR. Diclofenac showed the lowest PCR (0.53, 95% confidence interval (CI) [0.41; 0.66]), while CO2 laser showed the highest PCR (0.97, 95% CI [0.90; 0.99]). For PRR, Er:YAG laser showed the highest rates (0.14, 95% CI [0.08; 0.21]), and imiquimod the lowest (0.00, 95% CI [0.00; 0.06]). In a pairwise meta-analysis, the OR indicated a lower recurrence rate for Er:YAG ablative fractional laser (AFL)-primed methyl-aminolevulinate photodynamic therapy (MAL-PDT) (Er:YAG AFL-PDT) compared to methyl-aminolevulinate photodynamic therapy (MAL-PDT) alone (OR = 0.22, 95% CI [0.06; 0.82]). The CO2 laser showed fewer local side effects than the Er:YAG laser, while PDTs caused more skin reactions. Due to qualitative data, comparability was limited, highlighting the need for individualized treatment. Conclusions: This study provides a complete and up-to-date evidence synthesis of practice-relevant interventions for AC, identifying the CO2 laser as the most effective treatment and regarding PCR and imiquimod as most effective concerning PRR. Full article
(This article belongs to the Special Issue Skin Diseases and Cell Therapy)
Show Figures

Graphical abstract

35 pages, 1395 KB  
Review
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics
by Nadezhda Ivanova
Pharmaceutics 2025, 17(8), 1009; https://doi.org/10.3390/pharmaceutics17081009 - 1 Aug 2025
Viewed by 736
Abstract
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while [...] Read more.
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while several other active pharmaceutical ingredients (APIs) (e.g., calcipotriol, tretinoin, diclofenac) have been repurposed, used off-label, or are currently being investigated in mono- or combined chemotherapies of skin cancers. Apart from them, dozens to hundreds of therapeutics of natural and synthetic origin are proven to possess anti-tumor activity against melanoma, squamous cell carcinoma (SCC), and other skin cancer types in in vitro studies. Their clinical introduction is most often limited by low skin permeability, challenged targeted drug delivery, insufficient chemical stability, non-selective cytotoxicity, or insufficient safety data. A variety of prodrug and nanotechnological approaches, including vesicular systems, micro- and nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, and others, offer versatile solutions for overcoming the biophysical barrier function of the skin and the undesirable physicochemical nature of some drug molecules. This review aims to present the most significant aspects and latest achievements on the subject. Full article
Show Figures

Figure 1

19 pages, 2360 KB  
Article
Lepisanthes alata Attenuates Carrageenan-Induced Inflammation and Pain in Rats: A Phytochemical-Based Approach
by Elvy Suhana Mohd Ramli, Nadia Mohamed Tarmizi, Nur Aqilah Kamaruddin and Mohd Amir Kamaruzzaman
Pharmaceuticals 2025, 18(8), 1142; https://doi.org/10.3390/ph18081142 - 31 Jul 2025
Viewed by 501
Abstract
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical [...] Read more.
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical plant that is rich in phytochemicals like polyphenols, this study assessed the optimal dose and the health benefits of LA in rats that had been induced with carrageenan to develop paw swelling. Methods: Twenty-four male Wistar rats were divided into four groups to which carrageenan was administered, after which, distilled water at oral dose (C + DW), sodium diclofenac 25 mg/kg (C + DS), LA extract in 250 mg/kg (C + LA250), and 500 mg/kg (C + LA500) was given, respectively. Paw edema was assessed in 24 h. Pain was assessed using the Rat Grimace Scale (RGS), cytokines, antioxidant activity, and tissue changes. Results: LA at 250 and 500 mg/kg significantly decreased paw edema and inflammatory markers in the results of both studies. Remarkably, LA 250 mg/kg significantly decreased RGS scores as well as IL-1β, TNF-α, and histological inflammation but had a positive effect on T-SOD levels. Conclusions: LA extract, especially at 250 mg/kg, shows potent anti-inflammatory, analgesic, and antioxidant properties in CIE rats. Full article
Show Figures

Graphical abstract

26 pages, 685 KB  
Article
Novel Research Regarding Topical Use of Diclofenac in Dermatology—Non-Clinical and Clinical Data
by Diana Ana-Maria Nițescu, Horia Păunescu, Mihnea Costescu, Bogdan Nițescu, Laurențiu Coman, Ion Fulga and Oana Andreia Coman
Sci. Pharm. 2025, 93(3), 34; https://doi.org/10.3390/scipharm93030034 - 30 Jul 2025
Viewed by 530
Abstract
Diclofenac, an aryl-acetic acid derivative from the non-steroidal anti-inflammatory drug class, is the subject of multiple non-clinical and clinical studies regarding its usefulness in treating some dermatologic pathologies with an inflammatory, auto-immune, or proliferative component. Diclofenac is now approved for the topical treatment [...] Read more.
Diclofenac, an aryl-acetic acid derivative from the non-steroidal anti-inflammatory drug class, is the subject of multiple non-clinical and clinical studies regarding its usefulness in treating some dermatologic pathologies with an inflammatory, auto-immune, or proliferative component. Diclofenac is now approved for the topical treatment of actinic keratoses (AK), pre-malignant entities that have the risk of transformation into skin carcinomas. The hypothesis that diclofenac increases granular layer development in the mice tail model, having an anti-psoriatic effect, was demonstrated in a previous study in which 1% and 2% diclofenac ointment was evaluated. The aim of the present study was to perform experimental research on the topical effect of diclofenac in the mice tail model, by testing 4% and 8% diclofenac ointment, which is presented in the first part of the manuscript. In the second part of the manuscript, we also aimed to conduct a literature review regarding topical diclofenac uses in specific dermatological entities by evaluating the articles published in PubMed and Scopus databases during 2014–2025. The studies regarding the efficacy of topical diclofenac in dermatological diseases such as AK and field cancerization, actinic cheilitis, basal cell carcinoma, Bowen disease, Darier disease, seborrheic keratoses, and porokeratosis, were analyzed. The results of the experimental work showed a significant effect of 4% and 8% diclofenac ointment on orthokeratosis degree when compared to the negative control groups. Diclofenac in the concentration of 4% and 8% significantly increased the orthokeratosis degree compared to the negative control with untreated mice (p = 0.006 and p = 0.011, respectively, using the Kruskal–Wallis test) and to the negative control with vehicle (p = 0.006 and p = 0.011, respectively, using the Kruskal–Wallis test). The mean epidermal thickness was increased for the diclofenac groups, but not significantly when compared to the control groups. The results are concordant with our previous experiment, emphasizing the need for future clinical trials on the use of topical diclofenac in psoriasis. Full article
Show Figures

Graphical abstract

23 pages, 1929 KB  
Article
Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River
by Emilia Bączkowska, Katarzyna Jankowska, Wojciech Artichowicz, Sylwia Fudala-Ksiazek and Małgorzata Szopińska
Resources 2025, 14(8), 123; https://doi.org/10.3390/resources14080123 - 29 Jul 2025
Viewed by 462
Abstract
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus [...] Read more.
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus was on the municipal wastewater treatment plant in Jastrzębia Góra, located in a region exposed to seasonal tourist pressure and discharging effluent into the Czarna Wda River. A total of 90 wastewater samples were collected during five monitoring campaigns (July, September 2021; February, May, July 2022) and analysed for 13 pharmaceuticals and personal care products (PPCPs) using ultra-high-performance liquid chromatography tandem mass spectrometry with electrospray ionisation (UHPLC-ESI-MS/MS). The monitoring included both untreated (UTWW) and treated wastewater (TWW) to assess the PPCP removal efficiency and persistence. The highest concentrations in the treated wastewater were observed for metoprolol (up to 472.9 ng/L), diclofenac (up to 3030 ng/L), trimethoprim (up to 603.6 ng/L) and carbamazepine (up to 2221 ng/L). A risk quotient (RQ) analysis identified diclofenac and LI-CBZ as priority substances for monitoring. Multivariate analyses (PCA, HCA) revealed co-occurrence patterns and seasonal trends. The results underline the need for advanced treatment solutions and targeted monitoring, especially in sensitive coastal catchments with variable micropollutant presence. Full article
Show Figures

Figure 1

27 pages, 1269 KB  
Review
Old and New Analgesic Acetaminophen: Pharmacological Mechanisms Compared with Non-Steroidal Anti-Inflammatory Drugs
by Hironori Tsuchiya and Maki Mizogami
Future Pharmacol. 2025, 5(3), 40; https://doi.org/10.3390/futurepharmacol5030040 - 22 Jul 2025
Viewed by 975
Abstract
Although it is more than a century since it was first marketed, acetaminophen remains one of the most popular analgesic agents. In addition, acetaminophen has recently been applied to multimodal analgesia in combination with non-steroidal anti-inflammatory drugs, and its consumption significantly increased during [...] Read more.
Although it is more than a century since it was first marketed, acetaminophen remains one of the most popular analgesic agents. In addition, acetaminophen has recently been applied to multimodal analgesia in combination with non-steroidal anti-inflammatory drugs, and its consumption significantly increased during the pandemic of coronavirus disease 2019 as well as diclofenac and ibuprofen. However, the detailed mode of analgesic action of acetaminophen is still unclear. In the present study, we comprehensively discuss conventional, recognized, and postulated mechanisms of analgesic acetaminophen and highlight the current mechanistic concepts while comparing with diclofenac and ibuprofen. Acetaminophen inhibits cyclooxygenase with selectivity for cyclooxygenase-2, which is higher than that of ibuprofen but lower than that of diclofenac. In contrast to diclofenac and ibuprofen, however, anti-inflammatory effects of acetaminophen depend on the extracellular conditions of inflamed tissues. Since the discovery of cyclooxygenase-3 in the canine brain, acetaminophen had been hypothesized to inhibit such a cyclooxygenase-1 variant selectively. However, this hypothesis was abandoned because cyclooxygenase-3 was revealed not to be physiologically and clinically relevant to humans. Recent studies suggest that acetaminophen is deacetylated to 4-aminophenol in the liver and after crossing the blood–brain barrier, it is metabolically converted into N-(4-hydroxyphenyl)arachidonoylamide. This metabolite exhibits bioactivities by targeting transient receptor potential vanilloid 1 channel, cannabinoid receptor 1, Cav3.2 calcium channel, anandamide, and cyclooxygenase, mediating acetaminophen analgesia. These targets may be partly associated with diclofenac and ibuprofen. The perspective of acetaminophen as a prodrug will be crucial for a future strategy to develop analgesics with higher tolerability and activity. Full article
Show Figures

Figure 1

28 pages, 1369 KB  
Review
Expanding Horizons: Opportunities for Diclofenac Beyond Traditional Use—A Review
by Mykhailo Dronik and Maryna Stasevych
Sci. Pharm. 2025, 93(3), 31; https://doi.org/10.3390/scipharm93030031 - 16 Jul 2025
Viewed by 717
Abstract
This study systematically reviews the non-traditional pharmacological effects of diclofenac, a well-known nonsteroidal anti-inflammatory drug, to explore its potential for drug repositioning beyond its established analgesic and anti-inflammatory applications. A comprehensive literature search was conducted using the PubMed, Scopus and Web of [...] Read more.
This study systematically reviews the non-traditional pharmacological effects of diclofenac, a well-known nonsteroidal anti-inflammatory drug, to explore its potential for drug repositioning beyond its established analgesic and anti-inflammatory applications. A comprehensive literature search was conducted using the PubMed, Scopus and Web of Science databases, covering studies from 1981 to 2025. It was revealed that over 94% of records in Scopus and Web of Science are duplicated in PubMed, so the latter was used for the search in our study. After duplicate removal and independent screening, 89 from 1123 retrieved studies were selected for the search. The analysis revealed a broad spectrum of diclofenac’s non-traditional pharmacological activities, including neuroprotective, antiamyloid, anticancer, antiviral, immunomodulatory, antibacterial, antifungal, anticonvulsant, radioprotective, and antioxidant properties, primarily identified through preclinical In vitro and In vivo studies. These effects are mediated through diverse molecular pathways beyond cyclooxygenase inhibition, such as modulation of neurotransmitter release, apoptosis, and cellular proliferation. Diclofenac showed potential for repositioning in oncology, neurodegenerative disorders, infectious diseases, and immune-mediated conditions. Its hepatotoxicity and cardiovascular risks necessitate strategies like advanced drug formulations, dose optimization, and personalized medicine to enhance safety. Large-scale randomized clinical trials are essential to validate these findings and ensure safe therapeutic expansion. Full article
Show Figures

Graphical abstract

14 pages, 7125 KB  
Article
Ultraporous Amine-Functionalized Organosilicas: Tuning Morphology and Surface Chemistry for Adsorption Applications
by Marlena Bytniewska, Kacper Latusek, Maria Powęzka, Marcin Kuśmierz, Oliwia Kapusta and Mariusz Barczak
Molecules 2025, 30(14), 2990; https://doi.org/10.3390/molecules30142990 - 16 Jul 2025
Viewed by 330
Abstract
Highly porous organosilicas were synthesized via direct co-condensation of two monomers, bis (triethoxysilyl) benzene and aminopropyltriethoxysilane, by adjusting the time between consecutive additions of the monomers and the ageing time of the as-obtained samples. The resulting organosilicas exhibited high porosities, with total pore [...] Read more.
Highly porous organosilicas were synthesized via direct co-condensation of two monomers, bis (triethoxysilyl) benzene and aminopropyltriethoxysilane, by adjusting the time between consecutive additions of the monomers and the ageing time of the as-obtained samples. The resulting organosilicas exhibited high porosities, with total pore volumes exceeding 2.2 cm3/g. Alongside detailed insights into the morphology, structure, and surface chemistry via a broad spectrum of various instrumental techniques, the obtained ultraporous amine-functionalized organosilicas were tested as adsorbents of diclofenac sodium, chosen here as a model drug. The results revealed remarkable differences in the physicochemical properties and adsorption efficiencies among the obtained samples, confirming that the time gap between the addition of the monomers and ageing time can be used to tune the morphological, structural, and chemical features of the obtained organosilicas and, as a consequence, their sorption efficiencies. Full article
Show Figures

Graphical abstract

16 pages, 2982 KB  
Article
Selection of an Optimal Metabolic Model for Accurately Predicting the Hepatic Clearance of Albumin-Binding-Sensitive Drugs
by Ren-Jong Liang, Shu-Hao Hsu, Hsueh-Tien Chen, Wan-Han Chen, Han-Yu Fu, Hsin-Ying Chen, Hong-Jaan Wang and Sung-Ling Tang
Pharmaceuticals 2025, 18(7), 991; https://doi.org/10.3390/ph18070991 - 1 Jul 2025
Viewed by 488
Abstract
Background/Objectives: Hepatic clearance is important in determining clinical drug administration strategies. Achieving accurate hepatic clearance predictions through in vitro-to-in vivo extrapolation (IVIVE) relies on appropriate model selection, which is a critical step. Although numerous models have been developed to estimate drug dosage, [...] Read more.
Background/Objectives: Hepatic clearance is important in determining clinical drug administration strategies. Achieving accurate hepatic clearance predictions through in vitro-to-in vivo extrapolation (IVIVE) relies on appropriate model selection, which is a critical step. Although numerous models have been developed to estimate drug dosage, some may fail to predict liver drug clearance owing to inappropriate hepatic clearance models during IVIVE. To address this limitation, an in silico-based model selection approach for optimizing hepatic clearance predictions was introduced in a previous study. The current study extends this strategy by verifying the accuracy of the selected models using ex situ experimental data, particularly for drugs whose model choices are influenced by protein binding. Methods: Commonly prescribed drugs were classified according to their hepatic extraction ratios and protein-binding properties. Building on previous studies that employed multinomial logistic regression analysis for model selection, a three-phase classification method was implemented to identify five representative drugs: diazepam, diclofenac, rosuvastatin, fluoxetine, and tolbutamide. Subsequently, an isolated perfused rat liver (IPRL) system was used to evaluate the accuracy of the in silico method. Results: As the unbound fraction increased for diazepam and diclofenac, the most suitable predictive model shifted from the initially preferred well-stirred model (WSM) to the modified well-stirred model (MWSM). For rosuvastatin, the MWSM provided a more accurate prediction. These three capacity-limited, binding-sensitive drugs conformed to the outcomes predicted by the multinomial logistic regression analysis. Fluoxetine was best described by the WSM, which is consistent with its flow-limited classification. For tolbutamide, a representative capacity-limited, binding-insensitive drug, no significant differences were observed among the various models. Conclusions: These findings demonstrate the accuracy of an in silico-based model selection approach for predicting liver metabolism and highlight its potential for guiding dosage adjustments. Furthermore, the IPRL system serves as a practical tool for validating the accuracy of the results derived from this approach. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

12 pages, 2780 KB  
Article
Catalytic Ozonation of Diclofenac Using CuO/Al2O3- and MnO2/Al2O3-Supported Catalysts
by Wenli Zhou, Xiaoxia Wang, Yanghong Xu, Qingsong Xu, Zheng Shen and Junlian Qiao
Chemistry 2025, 7(4), 107; https://doi.org/10.3390/chemistry7040107 - 25 Jun 2025
Viewed by 568
Abstract
Pharmaceuticals such as diclofenac (DCF), a widely used anti-inflammatory drug, are frequently detected in water bodies and pose serious environmental and health risks due to their persistence and low biodegradability. Although ozonation is an effective method for pollutant removal, its efficiency is often [...] Read more.
Pharmaceuticals such as diclofenac (DCF), a widely used anti-inflammatory drug, are frequently detected in water bodies and pose serious environmental and health risks due to their persistence and low biodegradability. Although ozonation is an effective method for pollutant removal, its efficiency is often limited by low ozone utilization and incomplete mineralization. In this work, CuO/Al2O3- and MnO2/Al2O3-supported catalysts were prepared via an impregnation method and evaluated for their performance in catalytic ozonation of diclofenac (DCF) in an aqueous solution. The catalysts were characterized by TEM, N2 adsorption–desorption, FTIR, and XPS analyses. The effects of catalyst type, dosage, initial pH, and ozone flow rate on degradation efficiency were systematically investigated. Under optimal conditions, the DCF removal efficiencies reached 73.99% and 76.33% using CuO/Al2O3 and MnO2/Al2O3, respectively, while COD removal efficiencies were 77.6% and 89.3%. Quenching experiments indicated that hydroxyl radicals (•OH) were the predominant reactive species involved in the catalytic ozonation process. The results demonstrate that supported CuO and MnO2 catalysts can effectively enhance diclofenac degradation by ozone, offering potential for advanced water treatment applications. Full article
Show Figures

Figure 1

25 pages, 1144 KB  
Article
The Fate of Contaminants of Emerging Concern in an Upflow Anaerobic Sludge Blanket Reactor Coupled with Constructed Wetlands for Decentralized Domestic Wastewater Treatment
by Evridiki Barka, Asimina Koukoura, Evangelos Statiris, Taxiarchis Seintos, Athanasios S. Stasinakis, Daniel Mamais, Simos Malamis and Constantinos Noutsopoulos
Molecules 2025, 30(13), 2671; https://doi.org/10.3390/molecules30132671 - 20 Jun 2025
Viewed by 556
Abstract
Removal of micropollutants using biological treatment systems remains a challenge, since conventional bioprocess systems require adaptations to provide more advanced treatment. An ambient temperature upflow anaerobic sludge blanket (UASB) reactor was employed, followed by a two-stage (saturated and unsaturated) vertical subsurface flow (VSSF) [...] Read more.
Removal of micropollutants using biological treatment systems remains a challenge, since conventional bioprocess systems require adaptations to provide more advanced treatment. An ambient temperature upflow anaerobic sludge blanket (UASB) reactor was employed, followed by a two-stage (saturated and unsaturated) vertical subsurface flow (VSSF) constructed wetland (CW) system, to treat domestic wastewater from a nearby settlement and investigate the occurrence and fate of 10 contaminants of emerging concern (CECs) in decentralized, non-conventional treatment systems. The integrated UASB—two-stage CW system achieved high performance regarding abatement of target CECs across all periods. Removal efficiencies ranged from 78% ± 21% (ketoprofen) to practically 100% (2-hydroxybenzothiazole). The pilot system was found to be robust performance-wise and provided enhanced treatment in comparison to a conventional wastewater treatment plant operating in parallel. Most of the target CECs were successfully treated by UASB, saturated and unsaturated CWs, while ibuprofen, bisphenol A and diclofenac were mostly removed in the unsaturated CW. Environmental risk assessment revealed that triclosan poses a significant ecological risk to algae during treated wastewater disposal into the aquatic environment. Additionally, cumulative risk quotient indicated that the potential for mixture toxicity should be carefully considered across all trophic levels. Full article
Show Figures

Graphical abstract

Back to TopTop