Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents
2.2. Preparation of Samples
2.3. Cyclic Voltammetry Measurements—Experimental Protocol
2.4. Cyclic Voltammetry of Human Saliva and Artificial Sputum
3. Results and Discussion
3.1. The Selectivity Window of Pyocyanin
3.2. Identifying Electrochemical “Fingerprint” of Pyocyanin among Interacting Compounds
3.3. Detection Limit of Pyocyanin in a Complex Mixture of Interfering Compounds
3.4. Detection of Pyocyanin in Saliva Samples
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Miller, L.C.; O’Loughlin, C.T.; Zhang, Z.; Siryaporn, A.; Silpe, J.E.; Bassler, B.L.; Semmelhack, M.F. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa. J. Med. Chem. 2015, 58, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Damkiær, S.; Yang, L.; Molin, S.; Jelsbak, L. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. Proc. Natl. Acad. Sci. USA 2013, 110, 7766–7771. [Google Scholar] [CrossRef] [PubMed]
- Abu, E.A.; Su, S.; Sallans, L.; Boissy, R.E.; Greatens, A.; Heineman, W.R.; Hassett, D.J. Cyclic voltammetric, fluorescence and biological analysis of purified aeruginosin A, a secreted red pigment of Pseudomonas aeruginosa PAO1. Microbiology 2013, 159, 1736–1747. [Google Scholar] [CrossRef] [PubMed]
- Rada, B.; Gardina, P.; Myers, T.G.; Leto, T.L. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin. Muscosal. Immunol. 2011, 4, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Rada, B.; Leto, T.L. Pyocyanin effects on respiratory epithelium: Relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol. 2013, 21, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Webster, T.A.; Goluch, E.D. Electrochemical detection of pyocyanin in nanochannels with integrated palladium hydride reference electrodes. Lab. Chip 2012, 12, 5195–5201. [Google Scholar] [CrossRef] [PubMed]
- Michel-Briand, Y.; Baysse, C. The pyocins of Pseudomonas aeruginosa. Biochimie 2002, 84, 499–510. [Google Scholar] [CrossRef]
- Jayaseelan, S.; Ramaswamy, D.; Dharmaraj, S. Pyocyanin: Production, applications, challenges and new insights. World J. Microb. Biotechnol. 2014, 30, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, L.E.P.; Price-Whelan, A.; Petersen, A.; Whiteley, M.; Newman, D.K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61, 1308–1321. [Google Scholar] [CrossRef] [PubMed]
- Alatraktchi, F.A.; Bakmand, T.; Dimaki, M.; Svendsen, W.E. Novel Membrane-Based Electrochemical Sensor for Real-Time Bio-Applications. Sensors 2014, 14, 22128–22139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svendsen, W.E.; Alatraktchi, F.A.; Bakmand, T.; Waagepetersen, H.; Dimaki, M. Novel culturing platform for brain slices and neuronal cells. IEEE Eng. Med. Biol. Soc. 2015, 3299, 346–349. [Google Scholar]
- Sharp, D.; Gladstone, P.; Smith, R.B.; Forsythe, S.; Davis, J. Approaching intelligent infection diagnostics: Carbon fibre sensor for delectrochemical pyocyanin detection. Bioelectrochemistry 2009, 77, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Sismaet, H.J.; Webster, T.A.; Goluch, E.D. Up-regulating pyocyanin production by amino acid addition for early electrochemical identification of Pseudomonas aeruginosa. Analyst 2014, 139, 4241–4246. [Google Scholar] [CrossRef] [PubMed]
- Seviour, T.; Doyle, L.E.; Lauw, S.J.L.; Hinks, J.; Rice, S.A.; Netsatyy, V.J.; Webster, R.D.; Kjelleberg, S.; Marsili, E. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem. Commun. 2015, 51, 3789–3792. [Google Scholar] [CrossRef] [PubMed]
- Webster, T.A.; Sismaet, H.J.; Conte, J.L.; Chan, I.C.; Goluch, E.D. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens. Bioelectron. 2014, 60, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Bellin, D.L.; Sakhtah, H.; Rosenstein, J.K.; Levine, P.M.; Thimot, J.; Emmett, K.; Dietrich, L.E.P.; Shepard, K.L. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 2014, 5, 3256. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, G.; Dempsey, E.; McCormac, T.; Munteanu, C. Fast cyclic voltammetry of redox system NAD+/NADH on the copper nanodoped mercury monolayer carbon fiber electrode. J. Electroanal. Chem. 2012, 665, 12–19. [Google Scholar] [CrossRef]
- Lin, K.-C.; Chen, S.-M. Reversible cyclic voltammetry of the NADH/NAD+ redox system on hybrid poly(luminol)/FAD film modified electrodes. J. Electroanal. Chem. 2006, 589, 52–59. [Google Scholar] [CrossRef]
- Roka, A.; Inzelt, G. Cyclic voltammetric and nanogravimetric studies of NADP+ redox transformations on a yeast-modified platinum electrode. Electrochem. Commun. 2014, 45, 9–12. [Google Scholar]
- Godderis, L.; Schouteden, C.; Tabish, A.; Poels, K.; Hoet, P.; Baccarelli, A.A.; van Landuyt, K. Global Methylation and Hydroxymethylation in DNA from Blood and Saliva in Healthy Volunteers. BioMed Res. Int. 2015, 2015, 845041. [Google Scholar] [CrossRef] [PubMed]
- Johansen, H.K.; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark. Repræsentativt materiale til mikrobiologisk diagnostik af nedre luftvejsinfektioner. Personal communication, 2016. (In Danish)[Google Scholar]
- Kirchner, S.; Fothergill, J.L.; Wright, E.A.; James, C.E.; Mowat, E.; Winstanley, C. Use of Artificial Sputum Medium to Test Antibiotic Efficacy Against Pseudomonas aeruginosa in Conditions More Relevant to the Cystic Fibrosis Lung. Jove-Journal of Visualized Experiments. J. Vis. Exp. 2012, 64, e3857. [Google Scholar] [PubMed]
- Alatraktchi, F.A.-Z.; Molin, S.; Johansen, H.K.; Svendsen, W.E. Nano-molar selective detection of pyocyanin using electrochemical amperometry for diagnostic purposes. Future Med. 2016, submitted. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods—Fundamentals and Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Kissinger, P.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry, 2nd ed.; CRC Press: New York, NY, USA, 1996. [Google Scholar]
- Caldwell, C.C.; Chen, Y.; Goetzmann, H.S.; Hao, Y.; Borchers, M.T.; Hassett, D.J.; Young, L.R.; Mavrodi, D.; Thomashow, L.; Lau, G.W. Pseudomonas aeruginosa Exotoxin Pyocyanin Causes Cystic Fibrosis Airway Pathogenesis. Am. J. Pathol. 2009, 175, 2473–2488. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatraktchi, F.A.; Breum Andersen, S.; Krogh Johansen, H.; Molin, S.; Svendsen, W.E. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. Sensors 2016, 16, 408. https://doi.org/10.3390/s16030408
Alatraktchi FA, Breum Andersen S, Krogh Johansen H, Molin S, Svendsen WE. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. Sensors. 2016; 16(3):408. https://doi.org/10.3390/s16030408
Chicago/Turabian StyleAlatraktchi, Fatima AlZahra’a, Sandra Breum Andersen, Helle Krogh Johansen, Søren Molin, and Winnie E. Svendsen. 2016. "Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry" Sensors 16, no. 3: 408. https://doi.org/10.3390/s16030408
APA StyleAlatraktchi, F. A., Breum Andersen, S., Krogh Johansen, H., Molin, S., & Svendsen, W. E. (2016). Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. Sensors, 16(3), 408. https://doi.org/10.3390/s16030408