A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data
Abstract
:1. Introduction
2. Geometry and Signal Model
3. Derivation of the Azimuth Super-Resolution Method
3.1. Two Dimensional Dechirping
3.2. RVP Removal
3.3. Data Stitching and Requirement
3.4.Two Dimensional Data Correction
4. Restrictions
5. Simulations
6. Conclusions
- (1)
- A unique mapping between the time and the frequency domain was realized by a two-dimensional dechirping processing, which lays the foundation for the subsequent data stitching of multiple discontinuous tracks;
- (2)
- A data selection strategy and a data resorting and stitching method in the wavenumber domain were discussed to show how the signal wavenumber spectrum can be expanded in azimuth to achieve a better azimuth resolution;
- (3)
- A two-dimensional data correction method was presented to correct the signal coupling between the azimuth and the range directions.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
ROI | Region of Interest |
InSAR | Interferometric SAR |
RVP | Residual Video Phase |
FFT | Fast Fourier Transform |
LFM | Linear Frequency-Modulated |
TFD | Time-Frequency Domain |
PFA | Polar Format Algorithm |
References
- Carrara, W.G.; Goodman, R.S.; Majewski, R.M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech House: Boston, MA, USA, 1995. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; Wiley series in remote sensing; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Hu, J.; Li, Z.-W.; Ding, X.-L.; Zhu, J.-J. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching. Sensors 2008, 8, 6484–6495. [Google Scholar] [CrossRef]
- Yamaguchi, Y. Disaster Monitoring by Fully Polarimetric SAR Data Acquired With ALOS-PALSAR. Proc. IEEE 2012, 100, 2851–2860. [Google Scholar] [CrossRef]
- Nitti, D.O.; Bovenga, F.; Chiaradia, M.T.; Greco, M.; Pinelli, G. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation. Sensors 2015, 15, 18334–18359. [Google Scholar] [CrossRef] [PubMed]
- Sjanic, Z.; Gustafsson, F. Navigation and SAR focusing with map aiding. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1652–1663. [Google Scholar] [CrossRef]
- Fienup, J.R. Detecting moving targets in SAR imagery by focusing. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 794–809. [Google Scholar] [CrossRef]
- Gao, H.; Li, J. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm. Sensors 2014, 14, 10829–10845. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Liu, W.; Wang, P.; Li, C. A Synthetic Bandwidth Method for High-Resolution SAR Based on PGA in the Range Dimension. Sensors 2015, 15, 15339–15362. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Rocca, F. Improving slant-range resolution with multiple SAR surveys. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 135–143. [Google Scholar] [CrossRef]
- Ender, J.H.G.; Brenner, A.R. PAMIR-a wideband phased array SAR/MTI system. IET Radar Sonar Navig. 2003, 50, 165–172. [Google Scholar] [CrossRef]
- Cantalloube, H.; Dubois-Fernandez, P. Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results. IET Radar Sonar Navig. 2006, 153, 163–176. [Google Scholar] [CrossRef]
- Nel, W.; Tait, J.; Lord, R.; Wilkinson, A. The use of a frequency domain stepped frequency technique to obtain high range resolution on the CSIR X-Band SAR system. In Proceedings of the 6th IEEE Africon Conference in Africa, George, South Africa, 2–4 October 2002; Volume 1, pp. 327–332.
- Livingstone, C.E.; Sikaneta, I.; Gierull, C.; Chiu, S.; Beaulne, P. RADARSAT-2 System and Mode Description; Deference Research and Development Canada: Ottawa, ON, Canada, 2006. [Google Scholar]
- Zhu, X.X.; Bamler, R. Tomographic SAR Inversion by L1-Norm Regularization—The Compressive Sensing Approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3839–3846. [Google Scholar] [CrossRef]
- Zhu, X.X.; Bamler, R. Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3150–3157. [Google Scholar] [CrossRef]
- Lombardini, F.; Reigber, A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2013; Volume 3, pp. 2014–2016.
- Gini, F.; Lombardini, F. Multibaseline cross-track SAR interferometry: A signal processing perspective. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 71–93. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, J.; Xu, H.; Sun, B. A parameter-adjusting polar format algorithm for extremely high squint SAR imaging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 640–650. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, J.; Xu, H.; Sun, B. A novel non-interpolation polar format algorithm using non-lineal flight trajectories and auto-adaptive PRF technique. Prog. Electromagn. Res. 2012, 122, 155–173. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Sun, B.; Chen, J.; Xu, H. A new conical-trajectory polar format algorithm for spotlight bistatic SAR. Prog. Electromagn. Res. 2013, 139, 611–626. [Google Scholar] [CrossRef]
- Siegmund, R.; Bao, M.; Lehner, S.; Mayerle, R. First Demonstration of Surface Currents Imaged by Hybrid Along- and Cross-Track Interferometric SAR. IEEE Trans. Geosci. Remote Sens. 2004, 42, 511–519. [Google Scholar] [CrossRef]
- Brenner, A.R. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40% relative bandwidth in X-band. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012.
Parameters | Values | |||
---|---|---|---|---|
Carrier frequency | 10 GHz | |||
Bandwidth | 332 MHz | |||
Sampling rate | 398 MHz | |||
Pulse repetition frequency | 472.5 Hz | |||
Central slant range | Track 1 | Track 2 | Track 3 | |
10.52 km | 10.63 km | 10.73 km | ||
Central Look angle | Track 1 | Track 2 | Track 3 | |
48.3 deg | 48.4 deg | 48.2 deg | ||
Sensor squint angle | Track 1 | Track 2 | Track 3 | |
0.75 deg | 0 deg | −0.74 deg | ||
Theoretical ground resolution of original stripmap mode | Range | Azimuth | ||
0.53 m | 0.90 m |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, J.; Sun, B.; Yang, J. A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data. Sensors 2016, 16, 869. https://doi.org/10.3390/s16060869
Wang Y, Li J, Sun B, Yang J. A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data. Sensors. 2016; 16(6):869. https://doi.org/10.3390/s16060869
Chicago/Turabian StyleWang, Yan, Jingwen Li, Bing Sun, and Jian Yang. 2016. "A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data" Sensors 16, no. 6: 869. https://doi.org/10.3390/s16060869
APA StyleWang, Y., Li, J., Sun, B., & Yang, J. (2016). A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data. Sensors, 16(6), 869. https://doi.org/10.3390/s16060869