The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2
Abstract
:1. Introduction
2. Experimental Section
2.1. The Fabrication of 4H-SiC Detectors
2.2. Measurements
3. Results and Discussion
3.1. Electric Parameters
3.2. Alpha-Particle Detection–Steady State Measurement
3.3. Response Time—Pulsed Radiation Detection
3.4. Neutron/Gamma Discrimination
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Babcock, R.; Ruby, S.; Schupp, F.; Sun, K. Miniature Neutron Detectors; Westinghouse Electric Corporation Materials Engineering Report No. 5711-6600-A; Westinghouse Electric Corporation: Pittsburg, PA, USA, 1957. [Google Scholar]
- Babcock, R.; Chang, H. Silicon Carbide Neutron Detectors for High-Temperature Operation. In Reactor Dosimetry; International Atomic Energy Agency: Vienna, Austria, 1963; Volume 1, p. 613. [Google Scholar]
- Franceschini, F.; Ruddy, F.H. Silicon Carbide Neutron Detectors, Properties and Applications of Silicon Carbide; Gerhardt, R., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Takahashi, T.; Watanabe, S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nuclear Sci. 2001, 48, 950–959. [Google Scholar] [CrossRef]
- Butera, S.; Gohil, T.; Lioliou, G.; Krysa, A.B.; Barnett, A.M. Temperature study of Al0.52In0.48P detector photon counting X-ray spectrometer. J. Appl. Phys. 2016, 120, 024502. [Google Scholar] [CrossRef]
- Kozhevnikov, D.; Chelkov, G.; Demichev, M.; Gridin, A.; Smolyanskiy, P.; Zhemchugov, A. Performance and applications of GaAs:Cr-based Medipix detector in X-ray CT. J. Instrum. 2017, 12, C01005. [Google Scholar] [CrossRef]
- Rebai, M.; Cazzaniga, C.; Croci, G.; Tardocchib, M.; Cippob, E.P.; Calvanic, P.; Girolamic, M.; Trucchic, D.M.; Grossob, G.; Gorinia, G. Pixelated Single-crystal Diamond Detector for fast neutron measurements. J. Instrum. 2015, 10, C03016. [Google Scholar] [CrossRef]
- Liu, L.Y.; Ouyang, X.P.; Zhang, J.F.; Jin, P.; Su, C.L. Properties comparison between nanosecond X-ray detectors of polycrystalline and single-crystal diamond. Diam. Relat. Mater. 2016, 73, 248–252. [Google Scholar] [CrossRef]
- Szalkai, D.; Ferone, R.; Issa, F.; Klix, A. Fast Neutron Detection with 4H-SiC Based Diode Detector up to 500 °C Ambient Temperature. IEEE Trans. Nuclear Sci. 2016, 63, 1491–1498. [Google Scholar] [CrossRef]
- Abubakar, Y.M.; Lohstroh, A.; Sellin, P.J. Stability of Silicon Carbide Particle Detector Performance at Elevated Temperatures. IEEE Trans. Nuclear Sci. 2015, 62, 2360–2366. [Google Scholar] [CrossRef]
- Moscatelli, F. Silicon carbide for UV, alpha, beta and X-ray detectors results and perspectives. Nucl. Inst. Methods Phys. Res. A 2007, 583, 157–161. [Google Scholar] [CrossRef]
- Bruzzi, M.; Nava, F.; Pini, S.; Russo, S. High quality SiC applications in radiation dosimetry. Appl. Surf. Sci. 2001, 184, 425–430. [Google Scholar] [CrossRef]
- Ruddy, F.H.; Seidel, J.G.; Sellin, P. High-resolution alpha spectrometry with a thin-window silicon carbide semiconductor detector. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Orlando, FL, USA, 24 October–1 November 2009; pp. 2201–2206. [Google Scholar]
- Liu, L.Y.; Liu, J.L.; Chen, L.; Zhang, Z.B.; Jin, P.; Ruan, J.L.; Chen, G.; Liu, A.; Bai, S.; Ouyang, X.P. Properties of 4H silicon carbide detectors in the radiation detection of 86 MeV oxygen particles. Diam. Relat. Mater. 2017, 73, 177–181. [Google Scholar] [CrossRef]
- Dubecký, F.; Gombia, E.; Ferrari, C.; Zat’ko, B.; Vanko, G.; Baldini, M.; Kováč, J.; Baček, D.; Kováč, P.; Hrkút, P.; et al. Characterization of epitaxial 4H-SiC for photon detectors. J. Instrum. 2012, 7, P09005. [Google Scholar] [CrossRef]
- Nava, F.; Vittone, E.; Vanni, P.; Verzellesi, G.; Fuochi, P.G.; Lanzieri, C.; Glaser, M. Radiation tolerance of epitaxial silicon carbide detectors for electrons, protons and gamma-rays. Nucl. Inst. Methods Phys. Res. A 2003, 505, 645–655. [Google Scholar] [CrossRef]
- Lees, J.E.; Barnett, A.M.; Bassford, D.J.; Stevens, R.C.; Horsfall, A.B. SiC X-ray detectors for harsh environments. J. Instrum. 2011, 6, C01032. [Google Scholar] [CrossRef]
- Bertuccio, G.; Caccia, S.; Nava, F.; Preti, F. Ultra low noise epitaxial 4H-SiC X-ray detectors. Mater. Sci. Forum 2009, 615–617, 845–848. [Google Scholar] [CrossRef]
- Ha, J.H.; Kang, S.M.; Kim, H.S.; Park, S.H.; Lee, N.H.; Song, T.Y.; Lee, J.H.; Park, H.; Kim, J. 4H-SiC PIN-type semiconductor detector for fast neutron detection. Prog. Nucl. Sci. Technol. 2011, 237–239. [Google Scholar] [CrossRef]
- Seshadri, S.; Dulloo, A.R.; Ruddy, F.H.; Seidel, J.G.; Rowland, L.B. Demonstration of an SiC neutron detector for high-radiation environments. IEEE Trans. Electron Devices 1999, 46, 567–571. [Google Scholar] [CrossRef]
- Giudicea, A.L.; Fasolo, F.; Durisi, E.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Zanini, A.; Rosi, G. Performances of 4H-SiC Schottky diodes as neutron detectors. Nucl. Inst. Methods Phys. Res. A 2007, 583, 177–180. [Google Scholar] [CrossRef]
- Wu, J.; Lei, J.; Jiang, Y.; Chen, Y.; Rong, R.; Zou, D.; Fan, X.; Chen, G.; Li, L.; Bai, S. Feasibility study of a SiC sandwich neutron spectrometer. Nucl. Inst. Methods Phys. Res. A 2013, 708, 72–77. [Google Scholar] [CrossRef]
- Ruddy, F.H.; Seidel, J.G.; Chen, H.; Dulloo, A.R.; Ryu, S.H. High-resolution alpha-particle spectrometry using silicon carbide semiconductor detectors. IEEE Trans. Nucl. Sci. 2006, 53, 1713–1718. [Google Scholar] [CrossRef]
- Dulloo, A.R.; Ruddy, F.H.; Seidel, J.G.; Flinchbaugh, T.; Davison, C.; Daubenspeck, T. Neutron and Gamma Ray Dosimetry in Spent-Fuel Radiation Environments Using Silicon Carbide Semiconductor Radiation Detectors. In Reactor Dosimetry: Radiation Metrology and Assessment; ASTM STP 1398; American Society for Testing and Materials: West Conshohoken, PA, USA, 2001; pp. 683–690. [Google Scholar]
- Natsume, T.; Doi, H.; Ruddy, F.; Seidel, J.G.; Dulloo, A.R. Spent Fuel Monitoring with Silicon Carbide Semiconductor Neutron/Gamma Detectors. J. ASTM Int. 2005, 3, 1–8. [Google Scholar]
- Ruddy, F.H.; Dulloo, A.R.; Seidel, J.G.; Palmour, J.W.; Singh, R. The charged particle response of silicon carbide semiconductor radiation detectors. Nucl. Inst. Methods Phys. Res. A 2003, 505, 159–162. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Jiang, Y.; Li, J.; Zhang, Y.; Gao, H.; Liu, X.; Du, J.; Zou, D.; Fan, X.; et al. Performance of a 4H-SiC Schottky diode as a compact sized detector for neutron pulse form measurements. Nucl. Inst. Methods Phys. Res. A 2015, 771, 17–20. [Google Scholar] [CrossRef]
- Zhang, X.; Ouyang, X.; Chen, Y.; Zhang, Z.; Tian, G.; Chen, L.; Liu, J. A Si-PIN-stack detector for 14 MeV pulsed neutrons measurement. Nucl. Inst. Methods Phys. Res. A 2012, 693, 1–5. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Y.; Lei, J.; Fan, X.; Chen, Y.; Li, M.; Zou, D.; Liu, B. Effect of neutron irradiation on charge collection efficiency in 4H-SiC Schottky diode. Nucl. Inst. Methods Phys. Res. A 2014, 735, 218–222. [Google Scholar] [CrossRef]
- Yamaya, T.; Asano, R.; Endo, H.; Umeda, K. Measurement of the Fano factor for protons on silicon. Nucl. Inst. Methods 1979, 159, 181–187. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM-2003. Nucl. Inst. Methods Phys. Res. B 2004, 219–220, 1027–1036. [Google Scholar] [CrossRef]
- Dickinson, W.C.; Lauzon, A.F.; Neifert, R.D.; Lent, E.M. Response Function and Sensitivity of Double-Diffused Silicon Detectors in High γ-Dose Rate Fields; Report of Lawrence Livermore National Laboratory, UCRL-14405; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1965.
- Kuckuck, R.W. Semiconductor Detectors for Use in the Current Mode; Report of Lawrence Livermore National Laboratory, UCRL-51011; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1971.
- MCNP4C Mont Carlo N-Particle Transport Code System: Report of Los Alamos National Laboratory; Los Alamos National Laboratory: Los Alamos, NM, USA, 2000.
- Liu, L.Y.; Ouyang, X.P.; Zhang, Z.B.; Zhang, J.F.; Zhang, X.P.; Zhong, Y.H.; Wang, W. Polycrystalline chemical-vapor-deposited diamond for fast and ultra-fast neutron detection. Sci. China Technol. Sci. 2012, 55, 2640–2645. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.-Y.; Wang, L.; Jin, P.; Liu, J.-L.; Zhang, X.-P.; Chen, L.; Zhang, J.-F.; Ouyang, X.-P.; Liu, A.; Huang, R.-H.; et al. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2. Sensors 2017, 17, 2334. https://doi.org/10.3390/s17102334
Liu L-Y, Wang L, Jin P, Liu J-L, Zhang X-P, Chen L, Zhang J-F, Ouyang X-P, Liu A, Huang R-H, et al. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2. Sensors. 2017; 17(10):2334. https://doi.org/10.3390/s17102334
Chicago/Turabian StyleLiu, Lin-Yue, Ling Wang, Peng Jin, Jin-Liang Liu, Xian-Peng Zhang, Liang Chen, Jiang-Fu Zhang, Xiao-Ping Ouyang, Ao Liu, Run-Hua Huang, and et al. 2017. "The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2" Sensors 17, no. 10: 2334. https://doi.org/10.3390/s17102334
APA StyleLiu, L. -Y., Wang, L., Jin, P., Liu, J. -L., Zhang, X. -P., Chen, L., Zhang, J. -F., Ouyang, X. -P., Liu, A., Huang, R. -H., & Bai, S. (2017). The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2. Sensors, 17(10), 2334. https://doi.org/10.3390/s17102334