Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality
Abstract
:1. Introduction
2. Hardware and Software of the Developed Nearable
2.1. Nearable Monitoring and Coordination Station
2.2. Receiving Actuation Station
2.3. Data Connection
2.4. Control Algorithm
3. Case Study and Method of Evaluation of Comfort
3.1. Case Study
3.2. Influence of Weather Conditions on Monitoring Activity
- heating or cooling plants are turned off;
- weather conditions are quite good: outdoor and indoor temperatures are similar, there is no fog presence but a sufficient quantity of rainy days.
3.3. ILQ and IAQ Method of Evaluation
- 350 ppm for rural areas;
- 400 ppm for small towns;
- 450 ppm for urban centres.
4. Experimentation Results
4.1. ILQ
4.2. IAQ
4.3. Electrical Consumption
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nearable Definition. Available online: https://en.wikipedia.org/wiki/Nearables#cite_note-1 (accessed on 18 April 2017).
- Chwieduk, D. Towards sustainable-energy buildings. Appl. Energy 2003, 76, 211–217. [Google Scholar] [CrossRef]
- Terkaj, W.; Danza, L.; Devitofrancesco, A.; Gagliardo, S.; Ghellere, M.; Giannini, F.; Monti, M.; Pedrielli, G.; Sacco, M.; Salamone, F. A semantic framework for sustainable factories. Procedia CIRP 2014, 17, 547–552. [Google Scholar] [CrossRef]
- Gagliardo, S.; Giannini, F.; Monti, M.; Pedrielli, G.; Terkaj, W.; Sacco, M.; Ghellere, M.; Salamone, F. An ontology-based framework for sustainable factories. Comput. Aided Des. Appl. 2015, 12, 198–207. [Google Scholar] [CrossRef]
- Danza, L.; Belussi, L.; Meroni, I.; Mililli, M.; Salamone, F. Hourly calculation method of air source heat pump behavior. Buildings 2016, 6, 16. [Google Scholar] [CrossRef]
- Belussi, L.; Danza, L.; Meroni, I.; Salamone, F.; Ragazzi, F.; Mililli, M. Energy Performance of Buildings: A Study of the Differences between Assessment Methods. Energy Consumption: Impacts of Human Activity, Current and Future Challenges, Environmental and Socio-Economic Effects; University of Liege, Architecture and Urban Planning: Liege, Belgium, 2014. [Google Scholar]
- Belussi, L.; Danza, L.; Meroni, I.; Salamone, F. Energy performance assessment with empirical methods: Application of energy signature. Opto-Electron. Rev. 2015, 23, 83–87. [Google Scholar] [CrossRef]
- Danza, L.; Belussi, L.; Meroni, I.; Salamone, F.; Floreani, F.; Piccinini, A.; Dabusti, A. A Simplified Thermal Model to Control the Energy Fluxes and to Improve the Performance of Buildings. Energy Procedia 2016, 101, 97–104. [Google Scholar] [CrossRef]
- Danza, L.; Barozzi, B.; Belussi, L.; Meroni, I.; Salamone, F. Assessment of the performance of a ventilated window coupled with a heat recovery unit through the co-heating test. Buildings 2016, 6, 3. [Google Scholar] [CrossRef]
- Pasini, D.; Ventura, S.M.; Rinaldi, S.; Bellagente, P.; Flammini, A.; Ciribini, A.L.C. Exploiting Internet of Things and building information modeling framework for management of cognitive buildings. In Proceedings of the 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Mejías, A.; Herrera, R.S.; Márquez, M.A.; Calderón, A.J.; González, I.; Andújar, J.M. Easy Handling of Sensors and Actuators over TCP/IP Networks by Open Source Hardware/Software. Sensors 2017, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Terry, C.A.; Mishra, P.; Roseth, C.J. Preference for multitasking, technological dependency, student metacognition & pervasive technology use: An experimental intervention. Comput. Hum. Behav. 2016, 65, 241–251. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Integration of a do it yourself Hardware in a Lighting Device for the Management of Thermal Comfort and Energy Use. Energy Procedia 2016, 101, 161–168. [Google Scholar] [CrossRef]
- Huang, Q.; Mao, C. Occupancy Estimation in Smart Building Using Hybrid CO2/Light Wireless Sensor Network. J. Appl. Sci. Arts 2017, 1, 5. [Google Scholar]
- Torchia, F.; Ricciardi, P.; Scrosati, C.; Scamoni, F. Improvement of Façades Sound Insulation of Schools near the Bergamo-Orio al Serio International Airport: Case Study. Build. Acoust. 2015, 22, 123–142. [Google Scholar] [CrossRef]
- Casini, D.; Cellai, G.; Fogola, J.; Scamoni, F.; Secchi, S. Correlation between facade sound insulation and urban noise: A contribution to the acoustic classification of existing buildings. Build. Acoust. 2016, 23, 145–158. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices. Sensors 2016, 16, 338. [Google Scholar] [CrossRef] [PubMed]
- Construction Technologies Institute of the National Research Council of Italy (ITC-CNR). Available online: http://www.itc.cnr.it/ (accessed on 18 April 2017).
- Anderson, C. The New Industrial Revolution; Crown Business: New York, NY, USA, 2010. [Google Scholar]
- How to Make Almost Anything. Available online: http://cba.mit.edu/docs/papers/12.09.FA.pdf (accessed on 18 April 2017).
- Hatch, M. The Maker Movement Manifesto; McGraw-Hill Education: Columbus, OH, USA, 2014. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.P. Internet of Things Cloud Enabled MISSENARD Index Measurement for Indoor Occupants. Measurement 2016, 96, 157–165. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant. Sensors 2015, 15, 27990–28004. [Google Scholar] [CrossRef] [PubMed]
- Morón, C.; Díaz, J.P.; Ferrández, D.; Ramos, M.P. Mechatronic Prototype of Parabolic Solar Tracker. Sensors 2016, 16, 882. [Google Scholar] [CrossRef] [PubMed]
- oDocs Eye Care. Available online: http://www.odocs-tech.com/ (accessed on 18 April 2017).
- OBM—Open BioMedical Initiative. Available online: http://www.openbiomedical.org/ (accessed on 18 April 2017).
- Arduino UNO r3 Datasheet. Available online: https://www.arduino.cc/en/Main/ArduinoBoardUno (accessed on 18 April 2017).
- Wireless SD Shield datasheet. Available online: https://www.arduino.cc/en/Main/ArduinoWirelessShield (accessed on 18 April 2017).
- XBee S2 Module Datasheet. Available online: https://cdn.sparkfun.com/datasheets/Wireless/Zigbee/ds_xbeezbmodules.pdf (accessed on 18 April 2017).
- RTC Module Based on DS1307 Chip, Datasheet. Available online: https://cdn.sparkfun.com/datasheets/BreakoutBoards/DS1307.pdf (accessed on 18 April 2017).
- K30-CO2 Concentration Sensor, Datasheet. Available online: http://co2meters.com/Documentation/Datasheets/DS30-01%20-%20K30.pdf (accessed on 18 April 2017).
- External Wall as Defined by Input Output Reference—EnergyPlus. Available online: http://bigladdersoftware.com/epx/docs/8-2/input-output-reference/group-thermal-zone-description-geometry.html#wallexterior (accessed on 18 April 2017).
- Adiabatic Wall as Defined by Input Output Reference—EnergyPlus. Available online: http://bigladdersoftware.com/epx/docs/8-2/input-output-reference/group-thermal-zone-description-geometry.html#walladiabatic (accessed on 18 April 2017).
- Adiabatic Floor as Defined by Input Output Reference—EnergyPlus. Available online: http://bigladdersoftware.com/epx/docs/8-2/input-output-reference/group-thermal-zone-description-geometry.html#flooradiabatic (accessed on 18 April 2017).
- Roof as Defined by Input Output Reference—EnergyPlus. Available online: http://bigladdersoftware.com/epx/docs/8-2/input-output-reference/group-thermal-zone-description-geometry.html#roof (accessed on 18 April 2017).
- 2-Channel Relay Module Datasheet. Available online: http://www.microbot.it/documents/mr009-004_datasheet.pdf (accessed on 18 April 2017).
- 5V/3.3V Power Supply Module. Available online: http://www.dfrobot.com/index.php?route=product/product&product_id=488#.V5C9q9KLSUk (accessed on 18 April 2017).
- Faludi, R. Building Wireless Sensor Networks: With ZigBee, XBee, arduino, and Processing; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2010. [Google Scholar]
- Alliance, Z. IEEE 802.15. 4, ZigBee Standard. 2009. Available online: http://www.zigbee.org (accessed on 18 April 2017).
- Liu, X.; Chen, H.; Wang, M.; Chen, S. An XBee-Pro Based Energy Monitoring System. In Proceedings of the 2012 Australasian Telecommunication Networks and Applications Conference (ATNAC), Brisbane, Australia, 7–9 November 2012; pp. 1–6. [Google Scholar]
- UNI 10339:1995. Available online: http://store.uni.com/magento-1.4.0.1/index.php/uni-10339-1995.html (accessed on 18 April 2017).
- Roudsari, M.S.; Pak, M.; Smith, A. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13th International IBPSA Conference, Lyon, France, 25–30 August 2013. [Google Scholar]
- OpenFoam Site. Available online: http://www.openfoam.com/ (accessed on 18 April 2017).
- Haldi, F.; Robinson, D. Interactions with window openings by office occupants. Build. Environ. 2009, 44, 2378–2395. [Google Scholar] [CrossRef]
- Herkel, S.; Knapp, U.; Pfafferott, J.I. Towards a model of user behaviour regarding the manual control of windows in office buildings. Build. Environ. 2008, 43, 588–600. [Google Scholar] [CrossRef]
- Ai, Z.; Mak, C.; Cui, D. On-site measurements of ventilation performance and indoor air quality in naturally ventilated high-rise residential buildings in Hong Kong. Indoor Built Environ. 2013, 24, 214–224. [Google Scholar] [CrossRef]
- EN 15251:2008. Available online: http://store.uni.com/magento-1.4.0.1/index.php/uni-en-15251-2008.html (accessed on 18 April 2017).
- UNI EN 12464-1:2011. Available online: http://store.uni.com/magento-1.4.0.1/index.php/uni-en-12464-1-2011.html (accessed on 18 April 2017).
- Grasshopper, Graphical Algorithm Editor. Available online: http://www.grasshopper3d.com/ (accessed on 18 April 2017).
- TTToolbox Plugin. Available online: http://www.food4rhino.com/project/tttoolbox?etx (accessed on 18 April 2017).
- RIGERS Project. Available online: http://www.urbancenterbologna.it/images/2017_03_03_BolognaCittaResiliente/Tavolo_Servizi/BO-Resiliente_RIGERS1.pdf (accessed on 18 April 2017).
ZigBee End Device AT | ZigBee API Coordinator |
---|---|
SH: 0013A200 | SH: 0013A200 |
SL: 40BF9952 | SL: 40C143E8 |
PAN ID 1984 | PAN ID 1984 |
MY: 5ECA | MY: 5ECA |
BAUD rate 9600 | BAUD rate 9600 |
DH: 13A200 | DH: 0013A200 |
DL:40C143E8 | DL: 40BF9952 |
D3(17) Digital out, low [4] | |
D2(18) Digital out, low [4] |
Sequential Number | Value | Purpose |
---|---|---|
0 | 7E | Start delimiter |
1–2 | 00–10 | Frame length |
3 | 17 | Frame type: AT Command |
4 | 00 | Frame ID: no reply needed |
5–12 | 000000000000FFFF | Sending broadcast |
13–14 | FFFE | Destination Network: unknown |
15 | 02 | To apply changes |
16–17 | 44–02 | Bit mask indicating which pins of the XBee module are enabled for digital output (D2 in this case) |
18 | 05 | To set D2 pin to be digital out High |
19 | 70 | Checksum |
Period (Configuration) | Environmental Variable | Min | Max | Avg. | Days (Precipitations. >1.0 mm) | Cumulative Precipitations (mm) |
---|---|---|---|---|---|---|
I. 23–29 May (manual control) | External temperature (°C) | 11.48 | 32.05 | 20.88 | - | - |
Solar radiation (W/m2) | - | 946 | 436 | - | - | |
Wind speed [m/s] | 0.36 | 2.76 | 1.48 | - | - | |
Rain | - | - | - | 2/7 | 22.6 | |
II. 30 May–5 June (automatic control) | External temperature (°C) | 14.50 | 28.44 | 18.89 | - | - |
Solar radiation (W/m2) | - | 963 | 345 | - | - | |
Wind speed (m/s) | 0.21 | 2.60 | 1.11 | - | - | |
Rain | - | - | - | 6/7 | 118.2 |
IAQ Level | CO2,i–CO2,o Limits |
---|---|
I | CO2,i–CO2,o ≤ 350 ppm |
II | 350 ppm < CO2,i–CO2,o ≤ 500 ppm |
III | 500 ppm < CO2,i–CO2,o ≤ 800 ppm |
IV | CO2,i–CO2,o > 800 ppm |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamone, F.; Belussi, L.; Danza, L.; Galanos, T.; Ghellere, M.; Meroni, I. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors 2017, 17, 1021. https://doi.org/10.3390/s17051021
Salamone F, Belussi L, Danza L, Galanos T, Ghellere M, Meroni I. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors. 2017; 17(5):1021. https://doi.org/10.3390/s17051021
Chicago/Turabian StyleSalamone, Francesco, Lorenzo Belussi, Ludovico Danza, Theodore Galanos, Matteo Ghellere, and Italo Meroni. 2017. "Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality" Sensors 17, no. 5: 1021. https://doi.org/10.3390/s17051021
APA StyleSalamone, F., Belussi, L., Danza, L., Galanos, T., Ghellere, M., & Meroni, I. (2017). Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors, 17(5), 1021. https://doi.org/10.3390/s17051021