Label-Free QCM Immunosensor for the Detection of Ochratoxin A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the OTA Immobilized Sensor Surface
2.2.1. Preparation of the Gold Surface for OTA Binding
2.2.2. OTA Immobilization
2.3. OTA Measurement Procedure
2.4. Surface Regeneration
2.5. Safety Considerations
3. Results
3.1. OTA Immobilization
3.2. Regeneration
3.3. Assay Optimization
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Duarte, S.C.; Pena, A.; Lino, C.M. Human ochratoxin A biomarkers—From exposure to effect. Crit. Rev. Toxicol. 2011, 41, 187–212. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Evaluation of certain mycotoxins in food. Fifty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ. Tech. Rep. Ser. 2002, 906, 1–62. [Google Scholar]
- Hagelberg, S.; Hult, K.; Fuchs, R. Toxicokinetics of ochratoxin A in several species and its plasma-binding properties. J. Appl. Toxicol. 1989, 9, 91–96. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Resrarch on Cancer. IARC Heterocyclic Aromatic Amines and Mycotoxins VOLUME 56 lARe MONOGRAHS; International Agency for Resrarch on Cancer: Lyon, France, 1993. [Google Scholar]
- Bondy, G.S.; Pestka, J.J. Immunomodulatıon by fungal toxıns. J. Toxicol. Environ. Heal. Part B 2000, 3, 109–143. [Google Scholar] [CrossRef]
- Kuiper-Goodman, T.; Scott, P.M. Risk assessment of the mycotoxin ochratoxin A. Biomed. Environ. Sci. 1989, 2, 179–248. [Google Scholar] [PubMed]
- Marquardt, R.R.; Frohlich, A.A. A review of recent advances in understanding ochratoxicosis. J. Anim. Sci. 1992, 70, 3968–3988. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.M.; Austwick, P.K.; Carter, R.L.; Flynn, F.V.; Peristianis, G.C.; Aldridge, W.N. Balkan (endemic) nephropathy and a toxin-producing strain of Penicillium verrucosum var cyclopium: An experimental model in rats. Lancet 1977, 1, 671–675. [Google Scholar] [CrossRef]
- Sattler, T.A.; Dimitrov, T.; Hall, P.W. Relation between endemic (Balkan) nephropathy and urinary-tract tumours. Lancet 1977, 1, 278–280. [Google Scholar] [CrossRef]
- Castegnaro, M.; Canadas, D.; Vrabcheva, T.; Petkova-Bocharova, T.; Chernozemsky, I.N.; Pfohl-Leszkowicz, A. Balkan endemic nephropathy: Role of ochratoxins A through biomarkers. Mol. Nutr. Food Res. 2006, 50, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Abid, S.; Hassen, W.; Achour, A.; Skhiri, H.; Maaroufi, K.; Ellouz, F.; Creppy, E.; Bacha, H. Ochratoxin a and human chronic nephropathy in Tunisia: Is the situation endemic? Hum. Exp. Toxicol. 2003, 22, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bui-Klimke, T.R.; Wu, F. Ochratoxin A and Human Health Risk: A Review of the Evidence. Crit. Rev. Food Sci. Nutr. 2015, 55, 1860–1869. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins 2016, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Saldivar, S.O.S. Cereals as Feedstuffs for Animal Nutrition. In Cereal Grains: Properties, Processing, and Nutritional Attributes; CRC Press: Monterrey, Mexico, 2010; p. 629. [Google Scholar]
- Duarte, S.C.; Lino, C.M.; Pena, A. Food safety implications of ochratoxin A in animal-derived food products. Vet. J. 2012, 192, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Curtui, V.G.; Gareis, M. A simple HPLC method for the determination of the mycotoxins ochratoxin A and B in blood serum of swine. Food Addit. Contam. 2001, 18, 635–643. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006, Volume L364, pp. 5–24. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN (accessed on 5 March 2018).
- Boutrif, E. FAO programmes for prevention, regulation, and control of mycotoxins in food. Nat. Toxins 1995, 3, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Arya, S.K.; Vasudev, A.; Bhansali, S. Recent Advances in Detection of Ochratoxin-A. Open J. Appl. Biosens. 2013, 2, 1–11. [Google Scholar] [CrossRef]
- Rodrigues, I.; Naehrer, K. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 2012, 4, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [PubMed]
- Moran, K.L.M.; Fitzgerald, J.; McPartlin, D.A.; Loftus, J.H.; O’Kennedy, R. Biosensor-Based Technologies for the Detection of Pathogens and Toxins. Compr. Anal. Chem. 2016, 74, 93–120. [Google Scholar] [CrossRef]
- Anukul, N.; Vangnai, K.; Mahakarnchanakul, W. Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. J. Food Drug Anal. 2013, 21, 227–241. [Google Scholar] [CrossRef]
- Rickert, J.; Brecht, A.; Göpel, W. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens. Bioelectron. 1997, 12, 567–575. [Google Scholar] [CrossRef]
- Kurosawa, S.; Aizawa, H.; Tozuka, M.; Nakamura, M.; Park, J.-W. Immunosensors using a quartz crystal microbalance. Meas. Sci. Technol. 2003, 14, 1882–1887. [Google Scholar] [CrossRef]
- Sauerbrey, G. Use of quartz vibration for weighing thin films on a microbalance. J. Phys. 1959, 155, 206–212. [Google Scholar]
- Ke Thanh Ngo, V.; Phuong Uyen Nguyen, H.; Phat Huynh, T.; Giang Nguyen, D.; Man Tran, V.; Khoa My Nguyen, T.; Vinh Lam, Q.; Dat Huynh, T.; Ngoc Lien Truong, T. Quartz crystal microbalance (QCM) as biosensor for the detecting of Escherichia coli O157:H7. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 4. [Google Scholar] [CrossRef]
- Tsai, W.; Hsieh, C. QCM-Based Immunosensor for the Determination of Ochratoxin A. Anal. Lett. 2007, 40, 1979–1991. [Google Scholar] [CrossRef]
- Ertekin, Ö.; Öztürk, S.; Öztürk, Z.Z. Label Free QCM Immunobiosensor for AFLB1 Detection Using Monoclonal IgA Antibody as Recognition Element. Sensors 2016, 16, 1274. [Google Scholar] [CrossRef] [PubMed]
- Garai-Ibabe, G.; Grinyte, R.; Golub, E.I.; Canaan, A.; de la Chapelle, M.L.; Marks, R.S.; Pavlov, V. Label free and amplified detection of cancer marker EBNA-1 by DNA probe based biosensors. Biosens. Bioelectron. 2011, 30, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-R.; Jeong, H.-D.; Hong, S. QCM DNA biosensor for the diagnosis of a fish pathogenic virus VHSV. Talanta 2010, 82, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Ratautaite, V.; Plausinaitis, D.; Baleviciute, I.; Mikoliunaite, L.; Ramanaviciene, A.; Ramanavicius, A. Characterization of caffeine-imprinted polypyrrole by a quartz crystal microbalance and electrochemical impedance spectroscopy. Sens. Actuators B Chem. 2015, 212, 63–71. [Google Scholar] [CrossRef]
- Cimpoca, G.V.; Radulescu, C.; Popescu, I.V.; Dulama, I.D.; Bancuta, I. QCM Real-Time Sensor for monitoring of Poisonous Cyanide from Drinking Water and Environmental. AIP Conf. Proc. 2010, 415, 1–7. [Google Scholar] [CrossRef]
- Brito, M.C.; Guthrie, J. Development of Biosensors for Small Environmental Target Molecules Using Ce-Selex. McNair Sch. Res. J. 2016, 9, 4. [Google Scholar]
- Cox, K.L. Immunoassay Methods. In Assay Guidance Manual; National Center for Advancing Translational Sciences: Bethesda MD, USA, 2012; pp. 26–28. [Google Scholar]
- Myndrul, V.; Viter, R.; Savchuk, M.; Shpyrka, N.; Erts, D.; Jevdokimovs, D.; Silamiķelis, V.; Smyntyna, V.; Ramanavicius, A.; Iatsunskyi, I. Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosens. Bioelectron. 2018, 102, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Viter, R.; Savchuk, M.; Iatsunskyi, I.; Pietralik, Z.; Starodub, N.; Shpyrka, N.; Ramanaviciene, A.; Ramanavicius, A. Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosens. Bioelectron. 2018, 99, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Adányi, N.; Levkovets, I.A.; Rodriguez-Gil, S.; Ronald, A.; Váradi, M.; Szendrő, I. Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. Biosens. Bioelectron. 2007, 22, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, S.; Palleschı, G.; Compagnone, D.; Pascale, M.; Vıscontı, A.; Barnavetro, I. Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. Talanta 2006, 69, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Muchindu, M.; Iwuoha, E.; Pool, E.; West, N.; Jahed, N.; Baker, P.; Waryo, T.; Williams, A. Electrochemical Ochratoxin A Immunosensor System Developed on Sulfonated Polyaniline. Electroanalysis 2011, 23, 122–128. [Google Scholar] [CrossRef]
- Badea, M.; Floroian, L.; Restani, P.; Cobzac, S.C.A.; Moga, M. Ochratoxin A Detection on Antibody-Immobilized on BSA-Functionalized Gold Electrodes. PLoS ONE 2016, 11, e0160021. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Haupt, K.; Feller, K.-H. Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta 2017, 166, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Duato, P.; Bonel, L.; Castillo, J.R. Use of polyclonal antibodies to ochratoxin A with a quartz-crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal. Bioanal. Chem. 2009, 394, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Cheap, H.; Sanchez, M.; Vivier, V.; Perrot, H.; Marty, J.L. Ochratoxin A Detection by an Immunosensor Using Impedance Spectroscopy Coupled with Quartz Crystal Microbalance. Sens. Lett. 2011, 9, 2312–2315. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, B.; Tang, J.; Hou, L.; Chen, G. Displacement-type Quartz Crystal Microbalance Immunosensing Platform for Ultrasensitive Monitoring of Small Molecular Toxins. Anal. Chem. 2013, 85, 6958–6966. [Google Scholar] [CrossRef] [PubMed]
- Pagkali, V.; Petrou, P.S.; Salapatas, A.; Makarona, E.; Peters, J.; Haasnoot, W.; Jobst, G.; Economou, A.; Misiakos, K.; Raptis, I.; et al. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor. J. Hazard. Mater. 2017, 323, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Lates, V.; Yang, C.; Popescu, I.C.; Marty, J.-L. Displacement immunoassay for the detection of ochratoxin A using ochratoxin B modified glass beads. Anal. Bioanal. Chem. 2012, 402, 2861–2870. [Google Scholar] [CrossRef] [PubMed]
- OCHRATOXIN A | C20H18ClNO6—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/442530#section=Melting-Point (accessed on 16 December 2017).
- Yuan, J.; Deng, D.; Lauren, D.R.; Aguilar, M.-I.; Wu, Y. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Anal. Chim. Acta 2009, 656, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Goode, J.A.; Rushworth, J.V.H.; Millner, P.A. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir 2015, 31, 6267–6276. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-P.; Deng, Y.-J.; Jin, X.-Y.; Chen, L.-G.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization. Anal. Biochem. 2009, 389, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Baeumner, A.J.; Feller, K.-H. Rapid and sensitive inhibition-based assay for the electrochemical detection of Ochratoxin A and Aflatoxin M1 in red wine and milk. Electrochim. Acta 2017, 243, 82–89. [Google Scholar] [CrossRef]
- Kurosawa, S.; Park, J.-W.; Aizawa, H.; Wakida, S.-I.; Tao, H.; Ishihara, K. Quartz crystal microbalance immunosensors for environmental monitoring. Biosens. Bioelectron. 2006, 22, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Berthiller, F.; Brera, C.; Crews, C.; Iha, M.H.; Krska, R.; Lattanzio, V.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; Solfrizzo, M.; et al. Developments in mycotoxin analysis: An update for 2014-2015. World Mycotoxin J. 2016, 9, 5–30. [Google Scholar] [CrossRef]
- Ertekin, O.; Guloglu, F.B.; Pirincci, S.; Tuglu, S.; Akcael, E.; Ercan, D.; Hatipoglu, I.; Goksel, M.; Ahsen, V.; Ozturk, S. Antibody based systems for the determination of mycotoxins in food and feed. Curr. Opin. Biotechnol. 2013, 24, S23. [Google Scholar] [CrossRef]
- Tothill, I.E. Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J. 2011, 4, 361–374. [Google Scholar] [CrossRef] [Green Version]
- The Commission of European Communities. Commission Recommendation 2006/ 576/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, 49, 7–10. [Google Scholar]
EDC:OTA | Ethanol (%) | OTA (mM) | |
---|---|---|---|
Surface 1 | 20 | 66% | 6.6 |
Surface 2 | 40 | 50% | 5 |
Surface 3 | 40 | 25% | 2.5 |
R2 | LOD | LOQ | |
---|---|---|---|
5 min | 0.997 | 19.3 ng/mL | 58.5 ng/mL |
10 min | 0.998 | 17.2 ng/mL | 52.0 ng/mL |
Saturation | 0.995 | 26.5 ng/mL | 80.2 ng/mL |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirinçci, Ş.Ş.; Ertekin, Ö.; Laguna, D.E.; Özen, F.Ş.; Öztürk, Z.Z.; Öztürk, S. Label-Free QCM Immunosensor for the Detection of Ochratoxin A. Sensors 2018, 18, 1161. https://doi.org/10.3390/s18041161
Pirinçci ŞŞ, Ertekin Ö, Laguna DE, Özen FŞ, Öztürk ZZ, Öztürk S. Label-Free QCM Immunosensor for the Detection of Ochratoxin A. Sensors. 2018; 18(4):1161. https://doi.org/10.3390/s18041161
Chicago/Turabian StylePirinçci, Şerife Şeyda, Özlem Ertekin, Duygu Ercan Laguna, Fehime Şeyma Özen, Zafer Ziya Öztürk, and Selma Öztürk. 2018. "Label-Free QCM Immunosensor for the Detection of Ochratoxin A" Sensors 18, no. 4: 1161. https://doi.org/10.3390/s18041161