Nitric Oxide Analysis Down to ppt Levels by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy
Abstract
:1. Introduction
2. OF-CEAS Set-Up
3. Results
3.1. Limit of Detection (LOD)
3.2. Correction of Optical Saturation Effects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pollack, I.B.; Ryerson, T.B.; Trainer, M.; Neuman, J.A.; Roberts, J.M.; Parrish, D.D. Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. J. Geophys. Res. Atmos. 2013, 118, 5893–5911. [Google Scholar] [CrossRef] [Green Version]
- Masclin, S.; Frey, M.M.; Rogge, W.F.; Bales, R.C. Atmospheric nitric oxide and ozone at the WAIS Divide deep coring site: A discussion of local sources and transport in West Antarctica. Atmos. Chem. Phys. 2013, 13, 8857–8877. [Google Scholar] [CrossRef]
- Yao, D.; Vlessidis, A.G.; Evmiridis, N.P. Determination of Nitric Oxide in Biological Samples. Microchim. Acta 2004, 147, 1–20. [Google Scholar] [CrossRef]
- Gelb, A.F.; Barnes, P.J.; George, S.C.; Ricciardolo, F.L.M.; DiMaria, G.; Zamel, N. Review of exhaled nitric oxide in chronic obstructive pulmonary disease. J. Breath Res. 2012, 6, 047101. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, M.R.; Bakhirkin, Y.; Wysocki, G.; Lewicki, R.; Tittel, F.K. Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. J. Breath Res. 2007, 1, 014001. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Spagnolo, V.; Lewicki, R.; Tittel, F.K. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor. Opt. Express 2011, 19, 24037. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, R.; Doty, J.H.; Curl, R.F.; Tittel, F.K.; Wysocki, G. Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 12587–12592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhring, M.; Huang, S.; Jahjah, M.; Jiang, W.; Ren, W.; Willer, U.; Caneba, C.; Yang, L.; Nagrath, D.; Schade, W.; Tittel, F.K. QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells. Appl. Phys. B Lasers Opt. 2014, 117, 445–451. [Google Scholar] [CrossRef]
- Mandon, J.; Högman, M.; Merkus, P.J.F.M.; van Amsterdam, J.; Harren, F.J.M.; Cristescu, S.M. Exhaled nitric oxide monitoring by quantum cascade laser: Comparison with chemiluminescent and electrochemical sensors. J. Biomed. Opt. 2012, 17, 017003. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, D.; Mandon, J.; Cristescu, S.M.; Merkus, P.J.F.M.; Harren, F.J.M. Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide. Appl. Phys. B 2013, 111, 359–365. [Google Scholar] [CrossRef]
- Silva, M.L.; Sonnenfroh, D.M.; Rosen, D.I.; Allen, M.G.; Keefe, A.O. Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL. Appl. Phys. B 2005, 81, 705–710. [Google Scholar] [CrossRef]
- Tuzson, B.; Zeyer, K.; Steinbacher, M.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S.; Emmenegger, L. Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy. Atmos. Meas. Tech. 2013, 6, 927–936. [Google Scholar] [CrossRef]
- Ventrillard, I.; Gorrotxategi-Carbajo, P.; Romanini, D. Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared. Appl. Phys. B 2017, 123, 180. [Google Scholar] [CrossRef]
- Wagner, N.L.; Dubé, W.P.; Washenfelder, R.A.; Young, C.J.; Pollack, I.B.; Ryerson, T.B.; Brown, S.S. Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft. Atmos. Meas. Tech. 2011, 4, 1227–1240. [Google Scholar] [CrossRef]
- Yi, J.; Namjou, K.; McCann, P.; Richter-Addo, G. Simultaneous Gas-phase Detection of Nitric Oxide (NO) and Nitrous Oxide (N2O) from the Decomposition of Angeli’s Salt (Na2N2O3) at Different pHs Using Tunable-diode Laser Absorption Spectroscopy. Am. J. Biomed. Sci. 2009, 38–46. [Google Scholar] [CrossRef]
- McManus, J.B. Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng. 2010, 49, 111124. [Google Scholar] [CrossRef]
- Fuchs, H.; Dubé, W.P.; Lerner, B.M.; Wagner, N.L.; Williams, E.J.; Brown, S.S. A sensitive and versatile detector for atmospheric NO2 and NOX based on blue diode laser cavity ring-down spectroscopy. Environ. Sci. Technol. 2009, 43, 7831–7836. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.; Nowak, J.B.; Chen, G.; Buhr, M.; Arimoto, R.; Hogan, A.; Eisele, F.; Mauldin, L.; Tanner, D.; Shetter, R.; et al. Unexpected high levels of NO observed at South Pole. Geophys. Res. Lett. 2001, 28, 3625–3628. [Google Scholar] [CrossRef] [Green Version]
- Morville, J.; Kassi, S.; Chenevier, M.; Romanini, D. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B 2005, 80, 1027–1038. [Google Scholar] [CrossRef]
- Morville, J.; Romanini, D.; Kerstel, E. Cavity-Enhanced Spectroscopy and Sensing; Gagliardi, G., Loock, H.-P., Eds.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2014; Volume 179, ISBN 978-3-642-40002-5. [Google Scholar]
- Kassi, S.; Chenevier, M.; Gianfrani, L.; Salhi, A.; Rouillard, Y.; Ouvrard, A.; Romanini, D. Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy. Opt. Express 2006, 14, 11442. [Google Scholar] [CrossRef] [PubMed]
- Grilli, R.; Marrocco, N.; Desbois, T.; Guillerm, C.; Triest, J.; Kerstel, E.; Romanini, D. Invited Article: SUBGLACIOR: An optical analyzer embedded in an Antarctic ice probe for exploring the past climate. Rev. Sci. Instrum. 2014, 85, 111301. [Google Scholar] [CrossRef] [PubMed]
- Iannone, R.Q.; Kassi, S.; Jost, H.-J.; Chenevier, M.; Romanini, D.; Meijer, H.A.J.; Dhaniyala, S.; Snels, M.; Kerstel, E.R.T. Development and airborne operation of a compact water isotope ratio infrared spectrometer. Isotopes Environ. Health Stud. 2009, 45, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Ventrillard, I.; Xueref-Remy, I.; Schmidt, M.; Yver Kwok, C.; Faïn, X.; Romanini, D. Comparison of optical-feedback cavity-enhanced absorption spectroscopy and gas chromatography for ground-based and airborne measurements of atmospheric CO concentration. Atmos. Meas. Tech. Discuss. 2016, 10, 1–16. [Google Scholar] [CrossRef]
- Romanini, D.; Chenevier, M.; Kassi, S.; Schmidt, M.; Valant, C.; Ramonet, M.; Lopez, J.; Jost, H.-J. Optical–feedback cavity–enhanced absorption: A compact spectrometer for real–time measurement of atmospheric methane. Appl. Phys. B 2006, 83, 659–667. [Google Scholar] [CrossRef]
- Ventrillard, I.; Romanini, D.; Mondelain, D.; Campargue, A. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window. J. Chem. Phys. 2015, 143, 134304. [Google Scholar] [CrossRef] [PubMed]
- Kerstel, E.R.T.; Iannone, R.Q.; Chenevier, M.; Kassi, S.; Jost, H.-J.; Romanini, D. A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications. Appl. Phys. B 2006, 85, 397–406. [Google Scholar] [CrossRef]
- Burkart, J.; Kassi, S. Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy. Appl. Phys. B 2015, 119, 97–109. [Google Scholar] [CrossRef]
- Manfred, K.M.; Hunter, K.M.; Ciaffoni, L.; Ritchie, G.A.D. ICL-Based OF-CEAS: A Sensitive Tool for Analytical Chemistry. Anal. Chem. 2017, 89, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Richard, L.; Ventrillard, I.; Chau, G.; Jaulin, K.; Kerstel, E.; Romanini, D. Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: Application to SO2 trace analysis. Appl. Phys. B 2016, 122, 247. [Google Scholar] [CrossRef]
- Butler, T.J.A.; Mellon, D.; Kim, J.; Litman, J.; Orr-Ewing, A.J. Optical-Feedback Cavity Ring-Down Spectroscopy Measurements of Extinction by Aerosol Particles. J. Phys. Chem. A 2009, 113, 3963–3972. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Gorrotxategi-Carbajo, P.; Fasci, E.; Ventrillard, I.; Carras, M.; Maisons, G.; Romanini, D. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit. Appl. Phys. B 2013, 110, 309–314. [Google Scholar] [CrossRef]
- Werle, P.; Miicke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Demtröder, W. Laser Spectroscopy 1; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-53858-2. [Google Scholar]
- Giusfredi, G.; Bartalini, S.; Borri, S.; Cancio, P.; Galli, I.; Mazzotti, D.; De Natale, P. Saturated-Absorption Cavity Ring-Down Spectroscopy. Phys. Rev. Lett. 2010, 104, 110801. [Google Scholar] [CrossRef] [PubMed]
- Grilli, R.; Legrand, M.; Kukui, A.; Méjean, G.; Preunkert, S.; Romanini, D. First investigations of IO, BrO, and NO2 summer atmospheric levels at a coastal East Antarctic site using mode-locked cavity enhanced absorption spectroscopy. Geophys. Res. Lett. 2013, 40, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.L.; Dibb, J.E.; Huey, L.G.; Liao, J.; Tanner, D.; Lefer, B.; von Glasow, R.; Stutz, J. Modeling chemistry in and above snow at Summit, Greenland—Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer. Atmos. Chem. Phys. 2012, 12, 6537–6554. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, L.; Romanini, D.; Ventrillard, I. Nitric Oxide Analysis Down to ppt Levels by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy. Sensors 2018, 18, 1997. https://doi.org/10.3390/s18071997
Richard L, Romanini D, Ventrillard I. Nitric Oxide Analysis Down to ppt Levels by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy. Sensors. 2018; 18(7):1997. https://doi.org/10.3390/s18071997
Chicago/Turabian StyleRichard, Lucile, Daniele Romanini, and Irène Ventrillard. 2018. "Nitric Oxide Analysis Down to ppt Levels by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy" Sensors 18, no. 7: 1997. https://doi.org/10.3390/s18071997
APA StyleRichard, L., Romanini, D., & Ventrillard, I. (2018). Nitric Oxide Analysis Down to ppt Levels by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy. Sensors, 18(7), 1997. https://doi.org/10.3390/s18071997