Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology †
Abstract
:1. Introduction
2. Fabrication of WAW Conductive Films
2.1. WAW Film without Plated Electrode
2.2. WAW Film Coated with Metal Electrodes
3. Measurement Results and Discussion
3.1. Microstructure Analysis of Silver Film Surface
3.2. X-ray Diffraction (XRD) Analysis
3.3. Current-Voltage Characteristics Analysis
3.4. Light Transmittance Analysis
3.4.1. Optical Transmittance of WA Film
3.4.2. Optical Transmittance of WAW Film
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.G.; Cai, X.; Chen, Q.L.; Chu, P.K. Effects of Ti transition layer on stability of silver/titanium dioxide multilayered structure. Thin Solid Films 2007, 515, 3146–3150. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.B.; Hebard, A.F.; et al. Transparent, Conductive Carbon Nanotube Films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chien, J.C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A.M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Armstronga, N.R.; Cartera, C.; Donleya, C.; Simmondsa, A.; Leea, P.; Brumbacha, M.; Kippelenb, B.; Domercqb, B.; Yoob, S. Interface modification of ITO thin films: Organic photovoltaic cells. Thin Solid Films 2003, 445, 342–352. [Google Scholar] [CrossRef]
- Chen, C.H.; Tseng, M.C.; Chen, Y.J.; Wuu, D.S.; Horng, R.H. Performance comparisons of light- emitting thyristors with and without indium tin oxide transparent conductive layers. Phys. Status Solidi A 2018, 215, 1700442. [Google Scholar] [CrossRef]
- Mergel, D.; Qiao, Z. Dielectric modelling of optical spectra of thin In2O3:Sn films. J. Phys. D Appl. Phys. 2002, 35, 794–801. [Google Scholar] [CrossRef]
- Badeker, K. Electrical conductivity and thermo-electromotive force of some metallic compounds. Ann. Phys. 1907, 2, 749. [Google Scholar]
- Yamamoto, N.; Morisawa, K.; Murakami, J.; Nakatani, Y. Formation of ITO nanowires using conventional magnetron sputtering. ESC Solid State Lett. 2014, 3, 84–86. [Google Scholar] [CrossRef]
- Tran, D.P.; Lu, H.I.; Lin, C.K. Conductive characteristics of indium tin oxide thin film on polymeric substrate under long-term static deformation. Coatings 2018, 8, 212. [Google Scholar] [CrossRef]
- Bivour, M.; Temmler, J.; Steinkemper, H.; Hermle, M. Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 2015, 142, 34–41. [Google Scholar] [CrossRef]
- Zhang, N.; Hu, Y.; Liu, X. Transparent organic thin film transistors with WO3/Ag/WO3 source-drain electrodes fabricated by thermal evaporation. Appl. Phys. Lett. 2013, 103, 033301. [Google Scholar] [CrossRef]
- Niu, W.; Bi, X.G.; Sun, X.D. Research on electrochromic mechanism of WO3 thin film. In Proceedings of the 7th National Conference on Functional Materials and Applications 2010, Hunan, China, 15–18 October 2010; ISBN 978-1-935068-41-9. [Google Scholar]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156. [Google Scholar] [CrossRef]
- Sze, S.M. Semiconductor Device Physics and Technology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Streetman, B.G.; Banerjee, S.K. Solid State Electronic Devices, 7th ed.; Pearson: New York, NY, USA, 2016. [Google Scholar]
- Vida, G.; Josepovits, V.K.; Gyõr, M.; Deák, P. Characterization of tungsten surfaces by simultaneous work function and secondary electron emission measurements. Microsc. Microanal. 2003, 9, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Moliton, A.; Rammal, W.; Lucas, B. A new method for the determination of electronic mobility in organic materials. Europhys. Lett. 2005, 72, 754–759. [Google Scholar] [CrossRef]
- Chiu, F.C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef]
- Sumets, M. Charge transport in LiNbO3-based heterostructures. J. Nonlinear Opt. Phys. Mater. 2017, 26, 1750011. [Google Scholar] [CrossRef]
- Blanc, P.; Legendre, O.; Gaucher, E.C. Estimate of clay minerals amounts from XRD pattern modeling: The Arquant model. Phys. Chem. Earth Parts A/B/C 2007, 32, 135–144. [Google Scholar] [CrossRef]
- Huang, T.C.; Toney, M.F.; Brennan, S.; Rek, Z. Analysis of cobalt-doped iron oxide thin films by synchrotron radiation. Thin Solid Films 1987, 154, 439–445. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction, 3rd ed.; Pearson: New York, NY, USA, 2014. [Google Scholar]
- Granqvist, C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598. [Google Scholar] [CrossRef]
- Yanga, T.; Zhang, Z.; Song, S.; Li, Y.; Lv, M.S.; Wu, Z.; Han, S. Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering. Vacuum 2008, 83, 257–260. [Google Scholar] [CrossRef]
- Sun, S.; Wang, W.; Zeng, S.; Shang, M.; Zhang, L. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. J. Hazard. Mater. 2010, 178, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y. The Study of Electrochromic Device Using WO3/Ag/WO3 Transparent Conductive Thin Films Fabricated by Magnetron Sputtering. Master’s Thesis, Department of Materials and Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, 2017. [Google Scholar]
- Chopra, K.L.; Major, S.; Pandya, D.K. Transparent conductors-A status review. Thin Solid Films 1983, 102, 1–46. [Google Scholar] [CrossRef]
- Fang, G.; Li, D.; Yao, B.L. Magnetron sputtered AZO thin films on commercial ITO glass for application of a very low resistance transparent electrode. J. Phys. D Appl. Phys. 2002, 35, 3096–3100. [Google Scholar] [CrossRef]
- Mickan, M.; Helmersson, U.; Rinnert, H.; Ghanbaja, J.; Muller, D. Room temperature deposition of homogeneous, highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering. Sol. Energy Mater. Sol. Cells 2016, 157, 742–749. [Google Scholar] [CrossRef]
- Chiu, P.K.; Cho, W.H.; Chen, H.P.; Hsiao, C.N.; Yang, J.R. Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature. Nanoscale Res. Lett. 2012, 7, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, J.; Görrn, P.; Hamwi, S.; Johannes, H.-H.; Riedl, T.; Kowalsky, W. Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition. Appl. Phys. Lett. 2008, 93, 073308. [Google Scholar] [CrossRef]
Sputtering Method | Sputtering Power (W) | Thickness of Tungsten Oxide (nm) | Thickness of Silver Layer (nm) |
---|---|---|---|
RF type | 100 | 50 or 60 | 10 or 20 |
Metal Species | Au | Ag | Cu | W |
---|---|---|---|---|
Work function (Φm, V) | 4.8 | 4.26 | 4.65 | 4.55 |
Sample | WA (8 nm) | WA (10 nm) | WA (14 nm) | WA (20 nm) | WA (10 nm)W |
---|---|---|---|---|---|
T % at = 550 nm | 63.28% | 50.06% | 37.09% | 22.49% | 81.34% |
Sample | WAW(35) | WAW(50) | WAW(65) | WAW(80) |
---|---|---|---|---|
T % at = 550 nm | 70.37% | 81.34% | 77.28% | 53.58% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-J.; Wang, M.-C.; Chen, S.-F.; Li, Y.-H.; Shen, T.-S.; Bor, H.-Y.; Wei, C.-N.
Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology
Wang S-J, Wang M-C, Chen S-F, Li Y-H, Shen T-S, Bor H-Y, Wei C-N.
Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology
Wang, Shea-Jue, Mu-Chun Wang, Shih-Fan Chen, Yu-Hsiang Li, Tien-Szu Shen, Hui-Yun Bor, and Chao-Nan Wei.
2018. "Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology
Wang, S.-J., Wang, M.-C., Chen, S.-F., Li, Y.-H., Shen, T.-S., Bor, H.-Y., & Wei, C.-N.
(2018). Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology