sensors-logo

Journal Browser

Journal Browser

Selected Papers from the 7th IEEE International Symposium on Next-Generation Electronics (ISNE 2018)

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Sensor Networks".

Deadline for manuscript submissions: closed (31 August 2018) | Viewed by 39849

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
Interests: hardware–software co-design; intelligent vehicle chip design

E-Mail Website
Guest Editor
Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
Interests: artificial intelligence; intelligent image analytics; embedded systems; intelligent vehicles; smart manufacturing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
Interests: 3D gesture; 3D LiDAR; 3D multimedia system; consumer electronics; VLSI/SoC design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The 7th IEEE International Symposium on Next-Generation Electronics (ISNE 2018) will take place in Taipei, Taiwan, 7–9 May, 2017. Over the years, the ISNE conference has continuously provided a platform for experts, scholars, and researchers from all over the world to convene and share novel ideas on next-generation electronics. Authors of the selected papers are invited to submit the extended versions (at least 50% extension for the submissions) of their original papers and contributions regarding the following topics:

  • Biomedical Sensors and Actuators
  • Internet of Things (IoT) and Artificial Intelligence (AI) Techniques
  • Microelectronic Devices and Integrated Circuit Technologies for Sensors and Actuators
  • Mobile Ad-Hoc and Wireless Sensor Networks.
  • Photodetectors, Fiber Optics and Fiber Sensing
  • Sensor Applications on Computer Communication and Multimedia Techniques
  • Sensor Applications on Power and Control Engineering

Prof. Trong-Yen Lee
Prof. Yen-Lin Chen
Prof. Yu-Cheng Fan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biomedical Sensors
  • Internet of Things (IoT)
  • Artificial Intelligence (AI)
  • Microelectronic Devices
  • Optic Sensing
  • Sensor Networks
  • Computer Communication and Multimedia Techniques
  • Power and Control Engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

4 pages, 202 KiB  
Editorial
Next-Generation Electronics and Sensing Technology
by Trong-Yen Lee, Yen-Lin Chen and Yu-Cheng Fan
Sensors 2021, 21(23), 7958; https://doi.org/10.3390/s21237958 - 29 Nov 2021
Cited by 2 | Viewed by 1905
Abstract
This Special Issue is dedicated to several aspects of next-generation electronics and sensing technology and contains eight papers that focus on advanced sensing devices, sensing systems, and sensing circuits that focus on the state-of-the-art methods for sensing technologies [...] Full article

Research

Jump to: Editorial

11 pages, 4224 KiB  
Article
A Novel Dual-Band Six-Phase Voltage-Control Oscillator
by San-Fu Wang, Yu-Wei Chang and Chun-Yen Tang
Sensors 2018, 18(11), 4025; https://doi.org/10.3390/s18114025 - 19 Nov 2018
Cited by 6 | Viewed by 3914
Abstract
The paper presents a novel dual-band six-phase voltage-control oscillator. The voltage-controlled oscillator (VCO) with a single-ended delay cell architecture has a lower power consumption, a smaller chip area, and a larger output swing than one with a differential delay cell architecture. However, the [...] Read more.
The paper presents a novel dual-band six-phase voltage-control oscillator. The voltage-controlled oscillator (VCO) with a single-ended delay cell architecture has a lower power consumption, a smaller chip area, and a larger output swing than one with a differential delay cell architecture. However, the conventional even-phase outputs ring-type VCO cannot be implemented using single-ended delay cells. In other words, the VCO with single-ended delay cells meets most of the requirements of a sensor circuit system, except even-phase outputs function. This work presents a dual-band six-phase ring type VCO, which is implemented using the proposed single-ended delay cell. The proposed VCO both exhibits the advantages of single-ended delay cells and differential delay cells. The proposed delay cell has a band-switching function, which improves the jitter performance of a VCO in which it is used. The proposed VCO can be operated at 890–1080 MHz. The peak-to-peak jitter and the root mean square jitter are the 35.5 ps and 2.8 ps (at 1 GHz), respectively. The maximal power consumption is approximately 6.4 mW at a supply voltage of 1.8 V in a United Microelectronics Corporation 0.18 μm RF CMOS process. The area of the chip is 0.195 × 0.208 mm2. Full article
Show Figures

Figure 1

14 pages, 1806 KiB  
Article
A Reliability Scheduling Algorithm for the Static Segment of FlexRay on Vehicle Networks
by Trong-Yen Lee, I-An Lin, Jun-Jie Wang and Ju-Tse Tsai
Sensors 2018, 18(11), 3783; https://doi.org/10.3390/s18113783 - 5 Nov 2018
Cited by 9 | Viewed by 4623
Abstract
FlexRay is a next-generation in-vehicle communication protocol which works in real time with flexibility. The most common applications in FlexRay are high bandwidth. X-by-wire applications, such as brake by wire and throttle by wire. However, there is no mechanism which can prevent transient [...] Read more.
FlexRay is a next-generation in-vehicle communication protocol which works in real time with flexibility. The most common applications in FlexRay are high bandwidth. X-by-wire applications, such as brake by wire and throttle by wire. However, there is no mechanism which can prevent transient faults in the application layer of FlexRay. If a transient fault occurs during driving, this would be very dangerous; therefore, we propose a fast reliability scheduling algorithm (FRSA) to improve the communication reliability of FlexRay. The proposed method reduces the probability of transient faults in one clock cycle by using a retransmission mechanism to recover the transient errors, and further improves computational complexity using the lookup table method to ensure system reliability. In this paper, we analyze a related literature to establish the system reliability constraints needed to evaluate the necessary time and slot usage, and the proposed cost function is used to evaluate the performance and efficiency when the number of messages is increased. Experimental results show that the proposed FRSA reduces execution time by an average 70.76% and cost by an average 13.33% more than the other existing methods. This method can be useful to others, especially regarding research about periodic time-triggered communication systems. Full article
Show Figures

Figure 1

10 pages, 4981 KiB  
Article
Sensing and Reliability Improvement of Electrostatic-Discharge Transient by Discrete Engineering for High-Voltage 60-V n-Channel Lateral-Diffused MOSFETs with Embedded Silicon-Controlled Rectifiers
by Shen-Li Chen and Yi-Cih Wu
Sensors 2018, 18(10), 3340; https://doi.org/10.3390/s18103340 - 6 Oct 2018
Cited by 2 | Viewed by 3619
Abstract
High-voltage n-channel lateral-diffused metal-oxide-semiconductor field-effect transistor (nLDMOS) components, fabricated by a TSMC 0.25-μm 60-V bipolar-CMOS-DMOS (BCD) process with drain-side embedded silicon-controlled rectifier (SCR) of the n-p-n-arranged and p-n-p-arranged types, were investigated, in order to determine the devices’ electrostatic discharge (ESD)-sensing behavior [...] Read more.
High-voltage n-channel lateral-diffused metal-oxide-semiconductor field-effect transistor (nLDMOS) components, fabricated by a TSMC 0.25-μm 60-V bipolar-CMOS-DMOS (BCD) process with drain-side embedded silicon-controlled rectifier (SCR) of the n-p-n-arranged and p-n-p-arranged types, were investigated, in order to determine the devices’ electrostatic discharge (ESD)-sensing behavior and capability by discrete anode engineering. As for the drain-side n-p-n-arranged type with discrete-anode manners, transmission–line–pulse (TLP) testing results showed that the ESD ability (It2 value) was slightly upgraded. When the discrete physical parameter was 91 rows, the optimal It2 reached 2.157 A (increasing 17.7% compared with the reference sample). On the other hand, the drain-side SCR p-n-p-arranged type with discrete-anode manner had excellent SCR behavior, and its It2 values could be increased to >7 A (increasing >281.9% compared with the reference DUT). Moreover, under discrete anode engineering, the drain-side SCR n-p-n-arranged and p-n-p-arranged types had clearly higher ESD ability, except for the few discrete physical parameters. Therefore, using the anode discrete engineering, the ESD dissipation ability of a high-voltage (HV) nLDMOS with drain-side SCRs will have greater effectiveness. Full article
Show Figures

Figure 1

13 pages, 6114 KiB  
Article
Fabrication and Characterization of a High-Performance Multi-Annular Backscattered Electron Detector for Desktop SEM
by Wei-Ruei Lin, Yun-Ju Chuang, Chih-Hao Lee, Fan-Gang Tseng and Fu-Rong Chen
Sensors 2018, 18(9), 3093; https://doi.org/10.3390/s18093093 - 14 Sep 2018
Cited by 4 | Viewed by 6472
Abstract
Scanning electron microscopy has been developed for topographic analysis at the nanometer scale. Herein, we present a silicon p-n diode with multi-annular configuration to detect backscattering electrons (BSE) in a homemade desktop scanning electron microscope (SEM). The multi-annular configuration enables the enhancement of [...] Read more.
Scanning electron microscopy has been developed for topographic analysis at the nanometer scale. Herein, we present a silicon p-n diode with multi-annular configuration to detect backscattering electrons (BSE) in a homemade desktop scanning electron microscope (SEM). The multi-annular configuration enables the enhancement of the topography contrast of 82.11 nA/μm as compared with the commercial multi-fan-shaped BSE detector of 40.08 nA/μm. Additionally, we integrated it with lateral p-n junction processing and aluminum grid structure to increase the sensitivity and efficiency of the multi-annular BSE detector that gives higher sensitivity of atomic number contrast and better surface topography contrast of BSE images for low-energy detection. The responsivity data also shows that MA-AL and MA p-n detectors have higher gain value than the MA detector does. The standard deviation of measurements is no higher than 1%. These results verify that MA p-n and MA-AL detectors are stable and can function well in SEM for low-energy applications. It is demonstrated that the multi-annular (MA) detectors are well suited for imaging in SEM systems. Full article
Show Figures

Figure 1

25 pages, 6196 KiB  
Article
Learning-Directed Dynamic Voltage and Frequency Scaling Scheme with Adjustable Performance for Single-Core and Multi-Core Embedded and Mobile Systems
by Yen-Lin Chen, Ming-Feng Chang, Chao-Wei Yu, Xiu-Zhi Chen and Wen-Yew Liang
Sensors 2018, 18(9), 3068; https://doi.org/10.3390/s18093068 - 12 Sep 2018
Cited by 29 | Viewed by 6144
Abstract
Dynamic voltage and frequency scaling (DVFS) is a well-known method for saving energy consumption. Several DVFS studies have applied learning-based methods to implement the DVFS prediction model instead of complicated mathematical models. This paper proposes a lightweight learning-directed DVFS method that involves using [...] Read more.
Dynamic voltage and frequency scaling (DVFS) is a well-known method for saving energy consumption. Several DVFS studies have applied learning-based methods to implement the DVFS prediction model instead of complicated mathematical models. This paper proposes a lightweight learning-directed DVFS method that involves using counter propagation networks to sense and classify the task behavior and predict the best voltage/frequency setting for the system. An intelligent adjustment mechanism for performance is also provided to users under various performance requirements. The comparative experimental results of the proposed algorithms and other competitive techniques are evaluated on the NVIDIA JETSON Tegra K1 multicore platform and Intel PXA270 embedded platforms. The results demonstrate that the learning-directed DVFS method can accurately predict the suitable central processing unit (CPU) frequency, given the runtime statistical information of a running program, and achieve an energy savings rate up to 42%. Through this method, users can easily achieve effective energy consumption and performance by specifying the factors of performance loss. Full article
Show Figures

Figure 1

12 pages, 4888 KiB  
Article
Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology
by Shea-Jue Wang, Mu-Chun Wang, Shih-Fan Chen, Yu-Hsiang Li, Tien-Szu Shen, Hui-Yun Bor and Chao-Nan Wei
Sensors 2018, 18(9), 2803; https://doi.org/10.3390/s18092803 - 25 Aug 2018
Cited by 21 | Viewed by 3561
Abstract
In this work, three layers of transparent conductive films of WO3/Ag/WO3 (WAW) were deposited on a glass substrate by radio frequency (RF) magnetron sputtering. The thicknesses of WO3 (around 50~60 nm) and Ag (10~20 nm) films were mainly the [...] Read more.
In this work, three layers of transparent conductive films of WO3/Ag/WO3 (WAW) were deposited on a glass substrate by radio frequency (RF) magnetron sputtering. The thicknesses of WO3 (around 50~60 nm) and Ag (10~20 nm) films were mainly the changeable factors to achieve the optimal transparent conductivity attempting to replace the indium tin oxide (ITO) in cost consideration. The prepared films were cardinally subjected to physical and electrical characteristic analyses by means of X-ray diffraction analysis (XRD), field-emission scanning electron microscope (FE-SEM), and Keithley 4200 semiconductor parameter analyzer. The experimental results show as the thickness of the Ag layer increases from 10 nm to 20 nm, the resistance becomes smaller. While the thickness of the WO3 layer increases from 50 nm to 60 nm, its electrical resistance becomes larger. Full article
Show Figures

Figure 1

10 pages, 3392 KiB  
Article
Fabrication and Characterization of Planar-Type Top-Illuminated InP-Based Avalanche Photodetector on Conductive Substrate with Operating Speeds Exceeding 10 Gbps
by Jheng-Jie Liu, Wen-Jeng Ho, Cho-Chun Chiang, Chi-Jen Teng, Chia-Chun Yu and Yen-Chu Li
Sensors 2018, 18(9), 2800; https://doi.org/10.3390/s18092800 - 25 Aug 2018
Cited by 6 | Viewed by 4589
Abstract
This paper presents a high-speed top-illuminated InP-based avalanche photodetector (APD) fabricated on conductive InP-wafer using planar processes. The proposed device was then evaluated in terms of DC and dynamic performance characteristics. The design is based on a separate absorption, grading, charge, and multiplication [...] Read more.
This paper presents a high-speed top-illuminated InP-based avalanche photodetector (APD) fabricated on conductive InP-wafer using planar processes. The proposed device was then evaluated in terms of DC and dynamic performance characteristics. The design is based on a separate absorption, grading, charge, and multiplication (SAGCM) epitaxial-structure. An electric field-profile of the SAGCM layers was derived from the epitaxial structure. The punch-through voltage of the SAGCM APD was controlled to within 16–17 V, whereas the breakdown voltage (VBR) was controlled to within 28–29 V. We obtained dark current of 2.99 nA, capacitance of 0.226 pF, and multiplication gain of 12, when the APD was biased at 0.9 VBR at room temperature. The frequency-response was characterized by comparing the calculated 3-dB cut-off modulation-frequency (f3-dB) and f3-dB values measured under various multiplication gains and modulated incident powers. The time-response of the APD was evaluated by deriving eye-diagrams at 0.9 VBR using pseudorandom non-return to zero codes with a length of 231-1 at 10–12.5 Gbps. There was a notable absence of intersymbol-interference, and the signals remained error-free at data-rates of up to 12.5 Gbps. The correlation between the rise-time and modulated-bandwidth demonstrate the suitability of the proposed SAGCM-APD chip for applications involving an optical-receiver at data-rates of >10 Gbps. Full article
Show Figures

Figure 1

7 pages, 2004 KiB  
Article
Steep Switching of In0.18Al0.82N/AlN/GaN MIS-HEMT (Metal Insulator Semiconductor High Electron Mobility Transistors) on Si for Sensor Applications
by Pin-Guang Chen, Kuan-Ting Chen, Ming Tang, Zheng-Ying Wang, Yu-Chen Chou and Min-Hung Lee
Sensors 2018, 18(9), 2795; https://doi.org/10.3390/s18092795 - 24 Aug 2018
Cited by 4 | Viewed by 4156
Abstract
InAlN/Al/GaN high electron mobility transistors (HEMTs) directly on Si with dynamic threshold voltage for steep subthreshold slope (<60 mV/dec) are demonstrated in this study, and attributed to displacement charge transition effects. The material analysis with High-Resolution X-ray Diffraction (HR-XRD) and the relaxation by [...] Read more.
InAlN/Al/GaN high electron mobility transistors (HEMTs) directly on Si with dynamic threshold voltage for steep subthreshold slope (<60 mV/dec) are demonstrated in this study, and attributed to displacement charge transition effects. The material analysis with High-Resolution X-ray Diffraction (HR-XRD) and the relaxation by reciprocal space mapping (RSM) are performed to confirm indium barrier composition and epitaxy quality. The proposed InAlN barrier HEMTs exhibits high ON/OFF ratio with seven magnitudes and a steep threshold swing (SS) is also obtained with SS = 99 mV/dec for forward sweep and SS = 28 mV/dec for reverse sweep. For GaN-based HEMT directly on Si, this study displays outstanding performance with high ON/OFF ratio and SS < 60 mV/dec behaviors. Full article
Show Figures

Figure 1

Back to TopTop