Electrocomposite Developed with Chitosan and Ionic Liquids Using Screen-Printed Carbon Electrodes Useful to Detect Rutin in Tropical Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Chemicals and Reagents
2.3. Preparation of Electromodified SPC Electrode with Chitosan and Ionic Liquids (IL-CS/SPC)
2.4. Samples Preparation
2.5. Measurement Procedure
2.5.1. Cyclic Voltammetry
2.5.2. Square Wave-Stripping Voltammetry
2.5.3. EIS
3. Results and Discussion
3.1. Characterization of CS/SPC Electrode Surface with SEM
3.2. Raman Spectroscopy
3.3. Characterization of SPC, CS/SPC and IL-CS/SPC Electrodes by CV and EIS
3.4. Activity of RT Using SPC, CS/SPC and IL-CS/SPC Electrodes
3.5. Influence of the Scan Rate of RT on the IL-CS/SPC Electrode
3.6. Effect of pH on the Anodic Peak Current of RT on the IL-CS/SPC Electrode
3.7. Influence of the Adsorption Time (tADS), Adsorption Potential (EADS) and SWV Parameters
3.8. Analytical Parameters, Stability and Repeatability
3.9. Interference, Validation and Study
3.10. Analytical Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Liu, X.; Zeng, X.; Xia, B.; Gu, J.; Luo, S.; Mai, N.; Wei, W. Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sens. Actuators B-Chem. 2010, 145, 762–768. [Google Scholar] [CrossRef]
- Kang, X.; Wang, J.; Wu, H.; Aksay, I.A.; Liu, J.; Lin, Y. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 2009, 25, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Cai, H.; He, P.; Fang, Y. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. Analyst 2001, 126, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Armstrong, D.W. Ionic liquids in analytical chemistry. Anal. Chim. Acta 2010, 661, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Opallo, M.; Lesniewski, A. A review on electrodes modified with ionic liquids. J. Electroanal. Chem. 2011, 656, 2–16. [Google Scholar] [CrossRef]
- Nagles, E.; García-Beltrán, O.; Calderon, J.A. Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids. Electrochim. Acta 2017, 258, 512–523. [Google Scholar] [CrossRef]
- Ping, J.; Wu, J.; Wang, Y.; Ying, Y. Simultaneous determination of ascorbic acid, dopamine and uric acid using high performance screen-printed graphene electrode. Biosens. Bioelectron. 2010, 34, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Yang, W.; Guo, H.; Ren, J.; Yang, F.; Gao, J. A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode. Talanta 2012, 99, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Pandurangachar, M.; Kumara Swamy, B.E.; Chandrashekar, B.N.; Gilbert, O.; Sherigara, B.S. Electrochemical deposition of 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid on carbon paste electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J. Mol. Liq. 2011, 158, 13–17. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Y.; Wang, X.; Xu, L.; Xiang, J.; Sun, W. Electrochemical detection of hydroquinone with a gold nanoparticle and graphene modified carbon ionic liquid electrode. Sens. Actuators B-Chem. 2012, 168, 27–33. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Biparva, P. Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: Application to determination of sulfite and phenol in real samples. Measurement 2014, 56, 170–177. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Jahani, S. Electrocatalytic Determination of Hydrazine and Phenol Using a Carbon Paste Electrode Modified with Ionic Liquids and Magnetic Core-shell Fe3O4@SiO2/MWCNT Nanocomposite. Electroanalysis 2016, 28, 1093–1099. [Google Scholar] [CrossRef]
- Majidi, M.R.; Baj, R.F.B.; Bamorowat, M. Ionic liquid modified carbon-ceramicelectrode with structure similar to Graphene nanoplatelets: Application to Imidacloprid determination in some agricultural products. Measurement 2016, 93, 29–35. [Google Scholar] [CrossRef]
- River-Guzman, K.; Franco, L.M.; García-Beltrán, O.; Calderon, J.A.; Nagles, E. Electochemical Detection of Imidacloprid Using a Screen Printed Single Walled Carbon Nanotubes Coated with and Ionic Liquids. Int. J. Electrochem. Sci. 2018, 13, 5775–5787. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Zhang, Z.; Liu, G. Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode. Sens. Actuators B-Chem. 2014, 199, 7–14. [Google Scholar] [CrossRef]
- Chaiyo, S.; Mehmeti, E.; Žagar, K.; Siangproh, W.; Chailapakul, O.; Kalcher, K. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal. Chim. Acta 2016, 918, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Al-Sibaai, A.A.; Bashammakh, A.S.; Alwael, H.; El-Shahawi, M.S. Recent advances in dispersive liquid-liquid microextraction for pesticide analysis. TrAC-Trend Anal. Chem. 2015, 72, 181–192. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, A.; Li, Z.; Wang, J.; Zhang, S. Influence of anionic structure on the dissolution of chitosan in 1-butyl-3-methylimidazolium-based ionic liquids. Green Chem. 2011, 13, 3446–3452. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, S.; Li, S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem. 2006, 8, 630–633. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, J.; Zhang, H. A novel formaldehyde sensor containing AgPd alloy nanoparticles electrodeposited on an ionic liquid–chitosan composite film. J. Electroanal. Chem. 2012, 674, 1–6. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, L.; Li, J.; Zeng, J.; Zeng, B. Electrocatalytic Oxidation and Voltammetric Determination of Nitrite on Hydrophobic Ionic Liquid-Carbon Nanotube Gel-Chitosan Composite Modified Electrodes. Electroanalysis 2008, 20, 2047–2054. [Google Scholar] [CrossRef]
- Safavi, A.; Farjami, F. Electrodeposition of gold–platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens. Bioelectron. 2011, 26, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- MansouriMajd, S.; Teymourian, H.; Salimi, A.; Hallaj, R. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosannanocomposite modified glassy carbon electrode. Electrochim. Acta 2013, 108, 707–716. [Google Scholar] [CrossRef]
- Ragupathy, D.; Iyengar Gopalan, A.; Pill Lee, K. Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan–ionic liquid matrix towards improved performance for a glucose sensor. Electrochem. Commun. 2009, 11, 397–401. [Google Scholar] [CrossRef]
- Yu, Q.; Shi, Z.; Liu, X.; Luo, S.; Wei, W. A nonenzymatic hydrogen peroxide sensor based on chitosan-copper complexes modified multi-wall carbon nanotubes ionic liquid electrode. J. Electroanal. Chem. 2011, 655, 92–95. [Google Scholar] [CrossRef]
- Franzoi, A.C.; Cruz Vieira, I.; Dupont, J.; Weber Scheeren, C.; de Oliveira, L.F. Biosensor for luteolin based on silver or gold nanoparticles in ionic liquid and laccase immobilized in chitosan modified with cyanuric chloride. Analyst 2009, 134, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qin, P.; Gao, H.; Lic, G.; Jiao, K. Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence. Biosens. Bioelectron. 2010, 25, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qi, X.; Chen, Y.; Liu, S.; Gao, H. Application of chitosan/Fe3O4 microsphere-graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean Lectin gene sequence. Talanta 2011, 87, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Caló, V.; Nacci, A.; Monopoli, A.; Fornaro, A.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck Reaction Catalyzed by Nanosized Palladium on Chitosan in Ionic Liquids. Organometallics 2004, 23, 5154–5158. [Google Scholar] [CrossRef]
- Singh, P.K.; Bhattacharya, B.; Nagarale, R.K.; Kim, K.; Rhee, H. Synthesis, characterization and application of biopolymer-ionic liquid composite membranes. Synth. Met. 2010, 160, 139–142. [Google Scholar] [CrossRef]
- Lu, X.; Hu, J.; Yao, X.; Wang, Z.; Li, J. Composite System Based on Chitosan and Room-TemperatureIonic Liquid: Direct Electrochemistry and Electrocatalysis of Hemoglobin. Biomacromolecules 2006, 7, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Xi, F.; Liu, L.; Wu, Q.; Lin, X. One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition. Biosens. Bioelectron. 2008, 24, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, J. Direct electrochemistry and electrocatalysis of cytochrome c based on chitosan–room temperature ionic liquid-carbon nanotubes composite. Electrochim. Acta 2008, 54, 749–754. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Q.; Zhang, L.; Li, J. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem. Commun. 2006, 8, 874–878. [Google Scholar] [CrossRef]
- Zeng, X.; Li, X.; Xing, L.; Liu, X.; Luo, S.; Wei, W.; Kong, B.; Li, Y. Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens. Bioelectron. 2009, 24, 2898–2903. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tang, H.; Xie, Q.; Tan, L.; Zhang, Y.; Li, B.; Yao, S. Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim. Acta 2007, 52, 6630–6637. [Google Scholar] [CrossRef]
- Gopalan, A.I.; Lee, K.; Ragupathy, D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes–gold nanoparticles composite covered with a layer of chitosan–room-temperature ionic liquid network. Biosens. Bioelectron. 2009, 24, 2211–2217. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Yang, W.; Ren, J.; Guo, H.; Long, S.; Chen, J.; Gao, J. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochim. Acta 2012, 80, 346–353. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Liu, S.; Wang, L.; Gao, F.; Gao, F.; Sun, W. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode. Thin Solid Films 2012, 520, 4459–4464. [Google Scholar] [CrossRef]
- Roseghini, R.; Rocha, D.S.; Clarêncio, J.; Costa, S.L.; Costa, M.F.D.; Tardy, M.; Nascimento, R.; Schaer, R.; Velozo, E.; Meyer, R.; et al. Flavonoid Rutin Alters the Viability and Function of Mitogen-Stimulated Splenocytes and Thymocytes Compared with Non Stimulated Cells. Immunopharmacol. Immunotoxicol. 2007, 29, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikova, Y. Development of liquid chromatography-tandem mass spectrometry method for analysis of polyphenolic compounds in liquid samples of grape juice, green tea and coffee. Food Chem. 2014, 150, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.B.; Mohammadi-Behzad, L.; Hosseinkhani, H. Application of a Cuechitosan/multiwalled carbon nanotube film-modified electrode for the sensitive determination of rutin. Anal. Biochem. 2016, 493, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Xu, Z.; Li, J. Simultaneous determination of ascorbic acid and rutin in pharmaceutical preparations with electrochemical method based on multi-walled carbon nanotubes-chitosan composite film modified electrode. J. Pharm. Biomed. 2013, 76, 234–242. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Bi, Y.; Yang, C.; Hu, F.; Wang, C. Electrochemical study and application on rutin at chitosan/graphene films modified glassy carbon electrode. J. Pharm. Anal. 2013, 3, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhou, Y.; Cui, L.; Liu, T.; Ju, P.; Zhu, L.; Ai, S. Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly(amido amine) dendrimer. Microchim. Acta 2011, 173, 337–345. [Google Scholar] [CrossRef]
- Sun, W.; Yang, M.; Li, Y.; Jiang, Q.; Liu, S.; Jiao, K. Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. J. Pharm. Anal. 2008, 48, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, L.; Zhao, X.; Lu, X. Electrochemical behavior of rutin on a multi-walled carbon nanotube and ionic liquid composite film modified electrode. Colloid Surf. B 2010, 81, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhu, H.; Liu, S.; Xiang, J.; Sun, W.; Zhang, L. Electrochemical detection of rutin with a carbon ionic liquid. electrode modified by Nafion, graphene oxide and ionic. liquid composite. Microchim. Acta 2012, 178, 211–219. [Google Scholar] [CrossRef]
- Zhan, T.; Sun, X.; Wang, X.; Sun, W.; Hou, W. Application of ionic liquid modified carbon ceramic electrode for the sensitive voltammetric detection of rutin. Talanta 2010, 82, 1853–1857. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Sun, X.; Zhuang, X.; Zeng, Y.; Sun, W.; Huang, X. Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin. Thin Solid Films 2010, 519, 928–933. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; Zhu, H.; Sun, X.; Shi, F.; Li, G.; Sun, Z. Graphene-MnO2 nanocomposite modified carbon ionic liquid electrode for the sensitive electrochemical detection of rutin. Sens. Actuators B-Chem. 2013, 178, 443–449. [Google Scholar] [CrossRef]
- Gao, F.; Qi, X.; Cai, X.; Wang, Q.; Gao, F.; Sun, W. Electrochemically reduced graphene modified carbon ionic liquid electrode for the sensitive sensing of rutin. Thin Solid Films 2012, 520, 5064–5069. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Gong, S.; Cheng, Y.; Shi, F.; Sun, Z. Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin. Electrochim. Acta 2013, 109, 298–304. [Google Scholar] [CrossRef]
- Roushani, M.; Valipour, A. Using electrochemical oxidation of Rutin in modeling a novel andsensitive immunosensor based on Pt nanoparticle and graphene–ionicliquid–chitosan nanocomposite to detect human chorionicgonadotropin. Sens. Actuators B-Chem. 2016, 222, 1103–1111. [Google Scholar] [CrossRef]
- Shkrob, I.A.; Marin, T.W.; Chemerisov, S.D.; Hatcher, J.L.; Wishart, J.F. Radiation Induced Redox Reactions and Fragmentation of Constituent Ions in Ionic Liquids. 2. Imidazolium Cations. J. Phys. Chem. B 2011, 115, 3889–3902. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Takeda, M.; Iavazzo, R.E.S.; Garfinkel, D.; Scheinberg, I.H.; Edsall, J.T. Raman Spectra of Amino Acids and Related Compounds. IX. Ionization and Deuterium Substitution in Glycine, Alanine and β-Alanine1,2,3. J. Am. Chem. Soc. 1958, 80, 3813–3818. [Google Scholar] [CrossRef]
- Bisquert, J.; Garcia-Belmonte, G.; Bueno, P.; Longo, E.; Bulhões, L.O.S. Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J. Electroanal. Chem. 1998, 452, 229–234. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazema, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness fromconstant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Sasikumar, R.; Govindasamy, M.; Chen, S.M.; Chieh-Liu, Y.; Ranganathan, P.; Rwei, S.P.J. Electrochemical determination of morin in Kiwi and Strawberry fruit samples using vanadium pentoxide nano-flakes. J. Colloid Interface Sci. 2017, 504, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.L.; Wei, G.T.; Zen, J.M. Screen-printed ionic liquid/preanodized carbono electrode: Effective detection of dopamine in the presence of high concentration of ascorbic acid. Electrochem. Commun. 2011, 13, 174–177. [Google Scholar] [CrossRef]
- Hotta, H.; Ueda, M.; Nagano, S.; Tsujino, Y.; Koyama, J.; Osakai, T. Mechanistic study of the oxidation of caffeic acid by digital simulation of cyclic voltammograms. Anal. Biochem. 2002, 303, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Guan, Y.; Ye, J. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem. 2007, 100, 1573–1579. [Google Scholar] [CrossRef]
- Nagles, E.; García-Beltrán, O.; Hurtado, J. Speciation of morin and rutin in black tea, Cymbopogon citratus and fruit infusions by adsorption voltammetry using screen-printed carbon electrodes coated with chitosan: Effect of pH on speciation. Anal. Methods 2018, 10, 3680–3689. [Google Scholar] [CrossRef]
Electrode | Materials | DL (µmol L−1) | Application | Reference |
---|---|---|---|---|
GCE | Cu–CS/MWCNT | 0.01 | Fruits | [42] |
ABPE | CS/ MWCNT | 0.01 | Pharmaceutical samples | [43] |
CPE | IL | 0.01 | Pharmaceutical samples | [33] |
GCE | CS/G | 0.50 | Pharmaceutical samples | [44] |
GCE | IL-MWCNT | 0.02 | [47] | |
SPC | CS | 0.09 | Tea | [63] |
SPC | IL-CS | 0.07 | Tropical fruits | This work |
Sample | Added (µmol L−1) | Found (µmol L−1) | % Relative error |
---|---|---|---|
1 * | 1.74 | 1.94 ± 0.01 | 11.5 |
2 | 1.74 | 1.95 ± 0.02 | 12.1 |
3 | 3.50 | 3.92 ± 0.05 | 12.0 |
4 | 3.50 | 3.72 ± 0.04 | 6.3 |
Sample | Found (mol µL−1) | RDS (%) |
---|---|---|
RT | RT | |
Agraz extract | 18.3 | 0.50 |
Orange | 2.30 | 0.05 |
Lemon | 4.20 | 0.08 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, L.; Arancibia, V.; García-Beltrán, O.; Nagles, E.; Hurtado, J.J. Electrocomposite Developed with Chitosan and Ionic Liquids Using Screen-Printed Carbon Electrodes Useful to Detect Rutin in Tropical Fruits. Sensors 2018, 18, 2934. https://doi.org/10.3390/s18092934
Muñoz L, Arancibia V, García-Beltrán O, Nagles E, Hurtado JJ. Electrocomposite Developed with Chitosan and Ionic Liquids Using Screen-Printed Carbon Electrodes Useful to Detect Rutin in Tropical Fruits. Sensors. 2018; 18(9):2934. https://doi.org/10.3390/s18092934
Chicago/Turabian StyleMuñoz, Lili, Verónica Arancibia, Olimpo García-Beltrán, Edgar Nagles, and John J. Hurtado. 2018. "Electrocomposite Developed with Chitosan and Ionic Liquids Using Screen-Printed Carbon Electrodes Useful to Detect Rutin in Tropical Fruits" Sensors 18, no. 9: 2934. https://doi.org/10.3390/s18092934