A Novel Frequency Domain Impedance Sensor with a Perforated Cylinder Coaxial Design for In-Situ Measuring Soil Matric Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probe Design and Construction
2.2. Measurement Principle
2.3. Partitioning the Temperature Effect
2.4. Sensor Calibration
2.5. Testing of the Novel Sensor in Laboratory
3. Results and Discussion
3.1. Temperature Correction
3.2. The Results of Calibration
3.3. Results of the Testing in Laboratory
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dan, K.P.; Markus, T.; Lis, W.J.; Emmanuel, A.; Per, M. A new two-stage approach to predicting the soil water characteristic from saturation to oven-dryness. J. Hydrol. 2015, 521, 498–507. [Google Scholar]
- Guio Blanco, C.M.; Brito Gomez, V.M.; Crespo, P.; Ließ, M. Spatial prediction of soil water retention in a Paramo landscape: Methodological insight into machine learning using random forest. Geoderma 2018, 316, 100–114. [Google Scholar] [CrossRef]
- Fooladmand, H.R.; Hadipour, S. Evaluation of parametric transfer functions for estimating water retention curve in Fars province. Sci. Technol. Agric. Nat. Resour. Soil Water Sci. 2011, 15, 25–37. [Google Scholar]
- Miller, C.J.; Yesiller, N.; Yaldo, K.; Merayyan, S. Impact of soil type and compaction conditions on soil water characteristic. Geotechnol. Geoenviron. 2002, 128, 733–742. [Google Scholar] [CrossRef]
- Bittelli, M.; Flury, M. Errors in water retention curves determined with pressure plates. Soil Sci. Soc. Am. J. 2009, 73, 1453–1460. [Google Scholar] [CrossRef]
- Cresswell, H.P.; Green, T.W.; Mckenzie, N.J. The Adequacy of pressure plate apparatus for determining soil water retention. Soil Sci. Soc. Am. J. 2008, 72, 41–49. [Google Scholar] [CrossRef]
- Klein, V.A.; Baseggio, M.; Madalosso, T. Soil texture and the estimation by dewpoint potential meter of water retention at wilting point. Ciênc. Rural. 2010, 40, 1550–1556. [Google Scholar] [CrossRef]
- Bulut, R.; Leong, E.C. Indirect measurement of suction. Geotech. Geol. Eng. 2008, 26, 633–644. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Tarantino, A.; Ridley, A.M.; Toll, D.G. Field measurement of suction, water content, and water permeability. Geotech. Geol. Eng. 2008, 26, 751–782. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Andraski, B.J.; Bilskie, J. Miscellaneous methods for measuring matric or water potential. In Methods of Soil Analysis. Part 4—Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 643–669. [Google Scholar]
- Spaans, E.J.A.; Baker, J.M. Calibration of watermark soil moisture sensors for soil matric potential and temperature. Plant Soil 1992, 143, 213–217. [Google Scholar] [CrossRef]
- Malazian, A.; Hartsough, P.; Kamai, T.; Campbell, G.S.; Cobos, D.R.; Hopmans, J.W. Evaluation of MPS-1 soil water potential sensor. J. Hydrol. 2011, 402, 126–134. [Google Scholar] [CrossRef]
- Or, D.; Wraith, J. A new soil matric potential sensor based on time domain reflectometry. Water Resour. Res. 1999, 35, 3399–3408. [Google Scholar] [CrossRef]
- Whalley, W.R.; Clark, L.J.; Take, W.A.; Bird, N.R.A.; Leech, P.K.; Cope, R.E.; Watts, C. A porous-matrix sensor to measure the matric potential of soil water in the field. Eur. J. Soil Sci. 2007, 58, 18–25. [Google Scholar] [CrossRef]
- Chen, C.; Yan, X.; Ma, Y.; Yu, S.; Xu, Q.; Grantz, D.A.; Lammers, P.S.; Wang, Z.; Sun, Y.; Cheng, Q. Monitoring near-surface soil water content using an innovative perforated cylinder coaxial dielectric sensor. J. Hydrol. 2019, 573, 746–754. [Google Scholar] [CrossRef]
- Irrometer. Watermark Soil Moisture Sensor-Model 200SS; Specification Document; Irrometer Company, Inc.: Riverside, CA, USA, 2010; Available online: http://www.irrometer.com (accessed on 6 May 2019).
- Gaskin, G.J.; Miller, J.D. Measurement of soil water content using a simplified impedance measuring technique. Agric. Eng. Res. 1996, 63, 153–159. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, D.; Lin, J.; Lammers, P.S.; Damerow, L. An improved frequency domain technique for determining soil water content. PEDOSPHERE 2005, 15, 805–812. [Google Scholar]
- Dean, T.J.; Bell, J.P.; Baty, A.J.B. Soil moisture measurement by an improved capacitance technique, part I. sensor design and performance. J. Hydrol. 1987, 93, 67–78. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, H.; Qin, Y.; Lammers, P.S.; Berg, A.; Deng, H.; Cai, X.; Wang, D.; Jones, S.B. Horizontal monitoring of soil water content using a novel automated and mobile electromagnetic access-tube sensor. J. Hydrol. 2014, 516, 50–55. [Google Scholar] [CrossRef]
- Wraith, J.M.; Or, D. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: Experimental evidence and hypothesis development. Water Resour. Res. 1999, 35, 361–369. [Google Scholar] [CrossRef]
- Saito, T.; Fujimaki, H.; Yasuda, H.; Inoue, M. Empirical temperature calibration of capacitance probes to measure soil water. Soil Sci. Soc. Am. J. 2009, 73, 1931–1937. [Google Scholar] [CrossRef]
- Birchak, J.R.; Gardner, C.G.; Hipp, J.E.; Victor, J.M. High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 1974, 62, 93–98. [Google Scholar] [CrossRef]
- Weast, R.C. CRC Handbook of Chemistry and Physics, 67th ed.; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Thompson, S.J.; Armstrong, C.F. Calibration of the watermark model 200 soil moisture sensor. Appl. Eng. Agric. 1987, 12, 99–103. [Google Scholar] [CrossRef]
- Nolz, R.; Kammerer, G.; Cepuder, P. Calibrating soil water potential sensors integrated into a wireless monitoring network. Agric. Water Manag. 2013, 116, 12–20. [Google Scholar] [CrossRef]
- Campbell, G.S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 1974, 117, 311–314. [Google Scholar] [CrossRef]
- Yan, X.F.; Zhao, Y.J.; Cheng, Q.; Zheng, X.L.; Zhao, Y.D. Determining forest duff water content using a low-cost standing wave ratio sensor. Sensors 2018, 18, 647. [Google Scholar] [CrossRef] [PubMed]
- Genuchten, M.T.V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
Parameters | Sandy Soil | Sandy Loam | Forest Humus |
---|---|---|---|
θs | 0.31 | 0.42 | 0.63 |
θr | 0.06 | 0.07 | 0.09 |
n | 1.93 | 1.80 | 2.00 |
α | 0.0306 | 0.0387 | 0.0409 |
R2 | 0.97 | 0.97 | 0.96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Yan, X.; Xu, Q.; Yu, S.; Ma, Y.; Cheng, X.; Wang, Z.; Cheng, Q. A Novel Frequency Domain Impedance Sensor with a Perforated Cylinder Coaxial Design for In-Situ Measuring Soil Matric Potential. Sensors 2019, 19, 2626. https://doi.org/10.3390/s19112626
Chen C, Yan X, Xu Q, Yu S, Ma Y, Cheng X, Wang Z, Cheng Q. A Novel Frequency Domain Impedance Sensor with a Perforated Cylinder Coaxial Design for In-Situ Measuring Soil Matric Potential. Sensors. 2019; 19(11):2626. https://doi.org/10.3390/s19112626
Chicago/Turabian StyleChen, Chao, Xiaofei Yan, Qiang Xu, Song Yu, Yihan Ma, Xianglin Cheng, Zhongyi Wang, and Qiang Cheng. 2019. "A Novel Frequency Domain Impedance Sensor with a Perforated Cylinder Coaxial Design for In-Situ Measuring Soil Matric Potential" Sensors 19, no. 11: 2626. https://doi.org/10.3390/s19112626
APA StyleChen, C., Yan, X., Xu, Q., Yu, S., Ma, Y., Cheng, X., Wang, Z., & Cheng, Q. (2019). A Novel Frequency Domain Impedance Sensor with a Perforated Cylinder Coaxial Design for In-Situ Measuring Soil Matric Potential. Sensors, 19(11), 2626. https://doi.org/10.3390/s19112626