A Distance-Vector-Based Multi-Path Routing Scheme for Static-Node-Assisted Vehicular Networks
Abstract
:1. Introduction
2. Related Work
2.1. Vehicular Ad Hoc Networks
2.2. Deployment of Static Nodes in Vehicular Networks
2.3. Enhancing Vehicular Ad Hoc Networks with Unwired Static Nodes
3. RDV: The Base Scheme
3.1. Overview
3.2. Distance-Vector Based Routing Strategy
3.3. Packet Duplication
3.4. The Routing Metric
3.5. An Example
4. MP-RDV: The Proposed Scheme
4.1. Overview
4.2. Selection of Multiple Paths
- (A)
- The distance in carry of the secondary path is the same as or less than the primary path.
- (B)
- The previous-hop node of the secondary relay is different from that of the primary relay.
4.3. Extending APD for Multiple Paths
4.4. Designing Delay Metrics for MP-RDV
5. Evaluation
5.1. Methods
5.2. Results
5.3. Evaluating Delay Metrics
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Vahdat, A.; Becker, D. Epidemic Routing for Partially Connected Ad Hoc Networks; Duke University Tech Report CS-2000-06; Duke University: Duhram, NC, USA, 2000. [Google Scholar]
- Yoo, J.; Choi, S.; Kim, C.K. The capacity of epidemic routing in vehicular networks. IEEE Commun. Lett. 2009, 13, 459–461. [Google Scholar]
- Spyropoulos, T.; Psounis, K.; Raghavendra, C.S. Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks. In Proceedings of the ACM SIGCOMM Workshop on Delay Tolerant Networks ’05, Philadelphia, PA, USA, 26 August 2005; pp. 252–259. [Google Scholar]
- Lochert, C.; Mauve, M.; Fusler, H.; Hartenstein, H. Gergraphic Routing in City Scenarios. ACM Sigmob. Mob. Comput. Commun. Rev. 2005, 9, 69–72. [Google Scholar] [CrossRef]
- Lee, K.; Haerri, J.; Lee, U.; Gerla, M. Enhanced Perimeter Routing for Geographic Forwarding protocols in Urban Vehicular Scenarios. In Proceedings of the IEEE Globecom Workshops, Washington, DC, USA, 26–30 November 2007; pp. 1–10. [Google Scholar]
- Lochert, C.; Hartenstein, H.; Tian, J.; Fussler, H.; Hermann, D.; Mauve, M. A Routing Strategy for Vehicular Ad Hoc Networks in City Environment. In Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 9–11 June 2003; pp. 156–161. [Google Scholar]
- Seet, B.C.; Liu, G.; Lee, B.S.; Foh, C.H.; Lee, K.J.; Lee, K.K. A-STAR: A Mobile Ad Hoc Routing Strategy for Metropolis Vehicular Communications. In Networking 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3042, pp. 989–999. [Google Scholar]
- Zhao, J.; Cao, G. VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks. IEEE Trans. Veh. Technol. 2008, 57, 1910–1922. [Google Scholar] [CrossRef]
- Wu, H.; Fujimoto, R.; Guensler, R.; Hunter, M. MDDV: A Mobility-centric Data Dissemination Algorithm for Vehicluar Networks. In Proceedings of the VANET’04, Philadelphia, PA, USA, 1 October 2004; pp. 47–56. [Google Scholar]
- Jerbi, M.; Senouci, S.M.; Meraihi, R.; Ghamri-Doudane, Y. An improved Vehicular Ad Hoc Routing Protocol for City Environments. In Proceedings of the IEEE Internetional Conference on Communication (ICC), Glasgow, UK, 24–28 June 2007; pp. 3972–3979. [Google Scholar]
- Zhang, X.M.; Chen, K.H.; Cao, X.L.; Sung, D.K. A Street-centric Routing Protocol Based on Micro Topology in Vehicular Ad hoc Networks. IEEE Trans. Veh. Technol. 2016, 65, 5680–5694. [Google Scholar] [CrossRef]
- Ding, Y.; Xiao, L. SADV: Static-Node-Assisted Adaptive Data Dissemination in Vehicular Networks. IEEE Trans. Veh. Technol. 2010, 59, 2445–2455. [Google Scholar] [CrossRef]
- Yoshihiro, T.; Araki, D.; Sakaguchi, H.; Shibata, N. Providing Reliable Communications over Static-node-assisted Vehicular Networks Using Distance-vector Routing. Mob. Netw. Appl. 2018, 23, 1376–1393. [Google Scholar] [CrossRef] [Green Version]
- Araki, D.; Yoshihiro, T. A Multi-path Extension to RDV Routing Scheme for Static-node-Assisted Vehicular Networks. In Proceedings of the IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA2018), Krakow, Poland, 16–18 May 2018. [Google Scholar]
- Karagiannis, G.; Altintas, O.; Ekici, E.; Heijenk, G.; Jarupan, B.; Lin, K.; Weil, T. Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions. IEEE Commun. Surv. Tutor. 2011, 13, 584–616. [Google Scholar] [CrossRef]
- Electronic Road Pricing. Available online: https://en.wikipedia.org/wiki/Electronic_Road_Pricing (accessed on 28 February 2019).
- Fujimoto, A.; Sakai, K.; Hamada, M.O.S.; Handa, S.; Matsumoto, M.; Takahashi, K. Toward Realization of SMARTWAY in Japan. In Proceedings of the 15th World Congress on Intelligent Transportation Systems (ITSWC’08), New York, NY, USA, 16–20 November 2008. [Google Scholar]
- Jeong, J.; Guo, S.; Gu, Y.; He, T.; Du, D.H.C. Trajectory-Based Statistical Forwarding for Multihop Infrastructure-to-Vehicle Data Delivery. IEEE Trans. Mob. Comput. 2012, 11, 1523–1537. [Google Scholar] [CrossRef]
- Skordylis, A.; Trigoni, N. Delay-bounded Routing in Vehicular Ad hoc Networks. In Proceedings of the MobiHoc’08, Hong Kong, China, 26–30 May 2008; pp. 341–350. [Google Scholar]
- Jarupan, B.; Ekici, E. PROMPT: A Cross-layer Position-based Communication Protocol for Delay-aware Vehicular Access Networks. Ad Hoc Netw. 2010, 8, 489–505. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Y.; Li, B. Infrastructure-assisted Routing in Vehicular Networks. In Proceedings of the IEEE Infocom’12, Orlando, FL, USA, 25–30 March 2012. [Google Scholar]
- O’Driscoll, A.; Pesch, D. Hybrid geo-routing in urban vehicular networks. In Proceedings of the 2013 IEEE Vehicular Networking Conference, Boston, MA, USA, 16–18 December 2013; pp. 63–70. [Google Scholar]
- Li, P.; Huang, C.; Liu, Q. Delay Bounded Roadside Unit Placement in Vehicular Ad Hoc Networks. Int. J. Distrib. Sens. Netw. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Xu, L.; Huang, C.; Wang, J.; Zhu, J.; Zhang, L. An Efficient Traffic Geographic Static-node-assisted Routing in VANET. J. Netw. 2014, 9, 1096–1102. [Google Scholar] [CrossRef]
- Li, G.; Boukhatem, L.; Wu, J. Adaptive Quality-of-Service-Based Routing for Vehicular Ad Hoc Networks With Ant Colony Optimization. IEEE Trans. Veh. Technol. 2017, 66, 3249–3264. [Google Scholar] [CrossRef]
- Goudarzi, F.; Asgari, H.; Al-Raweshidy, H.S. Traffic-Aware VANET Routing for City Environments—A Protocol Based on Ant Colony Optimization. IEEE Syst. J. 2019, 13, 571–581. [Google Scholar] [CrossRef]
- Celes, C.; Boukerche, A.; Braga, R.B.; Ramos, H.S.; Andrade, R.M.C.; Loureiro, A.A.F. Exploiting Deily Trajectories for Efficient Routing in Vehicular Ad Hoc Networks. In Proceedings of the International Conference on Communications (ICC2018), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Open Street Map. Available online: https://www.openstreetmap.org/ (accessed on 28 February 2019).
- Behrisch, M.; Bieker, L.; Erdmann, J.; Krajzewicz, D. SUMO—Simulation of Urban MObility: An Overview. In Proceedings of the SIMUL2011, Barcelona, Spain, 23–29 October 2011; pp. 23–28. [Google Scholar]
Variable | Value |
---|---|
P | Preconfigured expected delivery ratio. |
Distance in carry for the destination. | |
Expected delivery ratio on link l. | |
Number of duplicated copies on link l. | |
delivery ratio of link l estimated by SVS. |
Dest. | Next,-Relay | Prev. | Dist. | Del. Ratio | Metric |
---|---|---|---|---|---|
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2 | |||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
Dest. | Next,-Relay | Prev. | Dist. | Del. Ratio | Metric |
---|---|---|---|---|---|
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1 | |||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araki, D.; Yoshihiro, T. A Distance-Vector-Based Multi-Path Routing Scheme for Static-Node-Assisted Vehicular Networks. Sensors 2019, 19, 2688. https://doi.org/10.3390/s19122688
Araki D, Yoshihiro T. A Distance-Vector-Based Multi-Path Routing Scheme for Static-Node-Assisted Vehicular Networks. Sensors. 2019; 19(12):2688. https://doi.org/10.3390/s19122688
Chicago/Turabian StyleAraki, Daichi, and Takuya Yoshihiro. 2019. "A Distance-Vector-Based Multi-Path Routing Scheme for Static-Node-Assisted Vehicular Networks" Sensors 19, no. 12: 2688. https://doi.org/10.3390/s19122688
APA StyleAraki, D., & Yoshihiro, T. (2019). A Distance-Vector-Based Multi-Path Routing Scheme for Static-Node-Assisted Vehicular Networks. Sensors, 19(12), 2688. https://doi.org/10.3390/s19122688