Recent Progress on Electromagnetic Field Measurement Based on Optical Sensors
Abstract
:1. Introduction
2. Magnetic Field Optical Sensors
2.1. Probes Based on the Faraday Effect
2.2. Probes Based on Magnetostriction
2.3. Probes Based on Refractive Index Tunability of Magnetic Fluid
3. Electric field Optical Sensors
3.1. Probes Based on the Electro-Optic Effect of Crystal
3.2. Probes Based on the Converse Piezoelectric Effect
3.3. Probes Based on Electrostatic Attraction
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Appendix A
Detection Mechanism | Sensor Probe Configuration | Field Transducer | Probe Size/mm | Detecting Range | Sensitivity/Resolution | Ref |
---|---|---|---|---|---|---|
Transmission intensity | Tb Fiber-PZF | Tb Fiber | 20 long | 0.02–3.2 T | 0.49 rad/T | [15] |
Beat frequency shift | DBR | Fiber grating | 20 long | — | 32.5 kHz/mT | [19] |
Frequency response | QWP-MO-mirror | MO polymer | 15 long | — | 20 fT/√Hz | [22] |
State of polarization | Silica Fiber | Silica Fiber | — | 0–1.5 T | 100 mT | [23] |
Wavelength shift | Terfenol-D-FBG | Terfenol-D | Φ 4.7 × 20 | — | — | [29] |
Wavelength shift | Terfenol-D-FBG | Terfenol-D | Φ 5 × 10 | 0–16.47 mT | 4.88 mT | [30] |
Wavelength shift | Terfenol-D-PS-FBG | Terfenol-D | 20 × 3 × 3 | 2.43–22.54 mT | 0.023 mT | [31] |
Wavelength shift | Terfenol-D-FBG | Terfenol-D | 60 × 60 × 60 | 0–350 mT | — | [32] |
Wavelength shift | Terfenol-D composite-FBG | Terfenol-D composite | 25 × 4 × 4 | 0–183 mT | 3.71 pm/mT | [33] |
Wavelength shift | Terfenol-D composite-FBG | Terfenol-D composite | Φ 1.5 × 7 | 0–750 mT | 3.3 pm/mT | [34] |
Wavelength shift | Terfenol-D composite-FBG | Terfenol-D composite | 50 long | 0–300 mT | 6 pm/mT | [35] |
Beat frequency shift | Terfenol-D composite-HiBi-PCF | Terfenol-D composite | 50 × 10 × 10 | 0–300 mT | 10.5 kHz/mT | [36] |
Wavelength shift | Terfenol-D film- FBG | Terfenol-D films | Φ 0.085 × 15 | 0–50 mT | 0.9 pm/mT | [38] |
Ring-down time spectroscopy | Terfenol-D film-FBG-FPI | Terfenol-D film | Φ 0.125 × 500 | 0–28.8 mT | 0.485 ns/mT | [39] |
Wavelength shift | Terfenol-D film-FBG | Terfenol-D film | 1.6 um | 20–100 mT | 0.4 mT | [40] |
Wavelength shift | Iron-nickel-FBG | Iron-nickel | Φ 0.185 × 22 | 0–6 mT | 0.75 mT | [41] |
Wavelength shift | Terfenol-D-FBG | Terfenol-D | 30 long | 0–20 mT | 0.3 pm/mT | [42] |
RBS spectral shift | FeCoV film-fiber | FeCoV films | — | 0–143.3 mT | 5.3 mT | [45] |
Wavelength shift | FBG-MF | MF(Fe3O4) | — | 0–25 mT | 3.44 pm/mT | [51] |
Transmission spectrum intensity | LFBG-MF | MF(EMG605) | Φ 0.45 × 30 | 0–11 mT | 1.54 dB/mT | [52] |
Resonance wavelength shift | LPFG | MF(EMG605) | Φ 1 × 100 | 0–189.7 mT | 176.4 pm/mT | [53] |
Resonance wavelength shift | MOF-LFBG-MF | MF(Fe3O4) | Φ 0.5 × 100 | 0–72.5 mT | −520 pm/mT | [54] |
Extinction ratio | TFBG | MF(EMG605) | — | 0–19.6 mT | — | [55] |
Transmission spectrum intensity | Etched fiber-MF | MF(Co-ZnO nanorods) | Φ 1 × 420 | 17–180 mT | — | [56] |
Wavelength shift | TMOF-MF | MF (Fe3O4) | — | 0–30 mT | 117.9 pm/mT | [58] |
Wavelength shift | CCMI-MF | MF (Fe3O4) | Φ 0.3 × 100 | 0–21.4 mT | 162.06 pm/mT | [57] |
Transmission spectrum intensity | TTCF-MF | MF | Φ 1 × 80 | 4–16 mT | −1.039 dB/mT | [59] |
Wavelength shift | MMI-MF | MF (EMG607) | Φ 1 × 30 | 0–22 mT | −2.93 nm/mT | [60] |
Wavelength shift | NATOF-MF | MF (Fe3O4) | — | 0–44 mT | −71.7 pm/mT | [61] |
Wavelength shift | NATMF-MF | MF | — | 10–22.5 mT | 1744 pm/mT | [62] |
Transmission spectrum intensity | Up-tapered joints-MF | MF (Fe3O4) | — | 2–30 mT | −0.2121 dB/mT | [63] |
Transmission spectrum intensity | IMI-MF | MF (EMG605) | — | 0–12 mT | 0.106 dB/mT | [65] |
Wavelength shift | SNS fiber-MF | MF(EXP08103) | 35 long | 0–6 mT | 6.33 nm/mT | [67] |
Wavelength shift | MFC-MF | MF | — | 0–240 mT | 1718 pm/mT | [69] |
Wavelength shift | FPI-FBG-MF | MF (EMG605) | — | 20–60 mT | 0.53 nm/mT | [70] |
Focal line position | Tube filed with MF | MF | — | - | - | [71] |
Wavelength shift | SMS fiber-MF | MF (Fe3O4) | — | 12–32.5 mT | −168.6 pm/mT | [72] |
Wavelength shift | D-shaped fiber-MF | MF (APGS12n) | — | 0.1–30.4 mT | 82.3 pm/mT | [73] |
Wavelength shift | D-shaped fiber with gold film-MF | MF (EMG 605) | — | 0–22.5 mT | 5987 pm/mT | [74] |
Wavelength shift | PCF-MF | MF | — | 0–38.7 mT | 110 pm/mT | [75] |
Detected Variable | Sensor Probe Configuration | Field Transducer | Probe Size/mm | Detecting Range | Sensitivity/Resolution | Ref |
---|---|---|---|---|---|---|
Output light intensity | MZI-LiNbO3 | LiNbO3 | 55 × 2 × 1 | 0–250 kV/m | 2 mV/(kV/m) | [80] |
Output light intensity | MZI-LiNbO3 | LiNbO3 | 50 × 10 × 9 | 0.02–30 kV/m | 20 mV/m/√Hz | [83] |
Output light intensity | SMF-LiNbO3 | LiNbO3 | 65 × 15 × 15 | ±801 kV/m | — | [84] |
Resonance wavelength shift | Tapered fiber-LiNbO3 | LiNbO3 | — | <13.16 MV/m | 15 kV/m | [85] |
Resonance wavelength shift | D-shaped fiber-LiNbO3 | LiNbO3 | 3900 × 27 × 20 | <18 MV/m | 50 pm/(MV/m) | [85] |
Output light intensity | CdTe crystal-Faraday rotator | CdTe | — | — | — | [91] |
Output light intensity | ZnTe-Bragg mirror | ZnTe | — | — | — | [92] |
Output light intensity | PMPCF-NLC | NLC | 30 long | 3.4–4.1 MV/m | 50 V/m | [94] |
Output light intensity | PC cavity-LC | LC | — | 2–10 MV/m | 0.143 V/m | [97] |
Transmission spectrum intensity | MZI-Propylene carbonate | Propylene carbonate | — | 5–15 MV/m | ∼0.1 W/(V/m) | [98] |
Output light intensity | MZI-Propylene carbonate | Propylene carbonate | — | <1400 kV/m | ∼89 V/m | [99] |
Wavelength shift | FP etalon-NLC | NLC | — | 4.494–7.865 kV/m | 121 V/m | [100] |
Transmission spectrum intensity | TFBG-NLC | NLC | — | 100~400 kV/m | 2.87 dB/(MV/m) | [104] |
Wavelength shift | FBG-PLZT | PLZT | — | 0–200 kV/m | - | [106] |
Wavelength shift | FBG-PZT | PZT | — | 0–400 V/mm | 0.45 pm/(kV/m) | [107] |
Wavelength shift | FBG-PZT | PZT | — | ±30 kV/m | −27 nW/V | [108] |
Resonance wavelength shift | FPI-polyester film | polyester film | — | 500–1600 kV/m | — | [111] |
Membrane movement. | Membrane-photodetector | Coper membrane | — | 0–17 kV/m | 3 3 μV /(V/m) | [113] |
Light flux intensity | MEMS chip | Si plate | 6 × 6 | <10 kV/m | 100 V/m/√Hz | [114] |
Appendix B
Acronym | Definition |
AC | Alternating Current |
BBO | Barium-Borate |
CCMI | Core–Cladding–Mode Interferometer |
CdTe | Electro-Optic Crystal |
DBR | Distributed Bragg Reflector |
DC | Direct Current |
DGD | Differential Group Delay |
EMF | Electromagnetic Field |
FBG | Fiber Bragg Grating |
FP | Fabry-Perot |
GMM | Giant Magnetostrictive Material |
HF | Hydrofluoric |
HiBi PCF | Highly Birefringent Photonic Crystal Fiber |
IMI | Intermodal Interferometer |
LC | Liquid crystal |
LFBG | Long-period Fiber Grating |
MEMS | Micro Electro Mechanical Systems |
MF | Magnetic Fluid |
MFC | Microfiber Coupler |
MMI | Microfiber Mode Interferometer |
MOF | Microstructured Optical Fiber |
MZI | Mach-Zehnder Interferometer |
NATMF | Nonadiabatic Tapered Microfiber |
NATOF | Nonadiabatic Tapered Optical Fiber |
NCF | No-Core Fiber |
NLC | Nematic Liquid Crystal |
OFDR | Optical Frequency Domain Reflectometer |
OTDR | Optical Time-Domain Reflectometry |
PCF | Photonic Crystal Fiber |
PDL | Polarization Dependent Loss |
PLZT | Lead lanthanum zirconate titanate |
PMF | Polarization Maintaining Fiber |
PS-FBG | Phase-Shifted Fiber Bragg Grating |
PVDF | Polyvinylidene Fluoride |
PZF | Polarization Fiber |
PZT | Piezoelectric ceramics |
RBS | Rayleigh Backscattering Spectra |
SMF | Single-Mode Fiber |
SMS | Singlemode–Multimode–Singlemode |
SNS | Singlemode-No-core-Singlemode |
Tb | Terbium |
TFBG | Tilted Fiber Bragg Grating |
TMOF | Tapered Microstructured Optical Fiber |
TTCF | Tapered thin-core fiber |
References
- Sipilä, P.; Lange, D.; Lechner, S.; Low, W.; Gross, P.; Baller, M.; Wachutka, G.; Wiesinger, F. Robust, susceptibility-matched NMR probes for compensation of magnetic field imperfections in magnetic resonance imaging (MRI). Sens. Actuators A Phys. 2008, 145, 139–146. [Google Scholar] [CrossRef]
- Thiel, F.; Kosch, O.; Seifert, F. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics. Sensors 2010, 10, 10778–10802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hand, J.; Bosmans, H.; Caruana, C.; Keevil, S.; Norris, D.; Padovani, R.; Speck, O. The European Federation of Organisations for Medical Physics Policy Statement No 14: The role of the Medical Physicist in the management of safety within the magnetic resonance imaging environment: EFOMP recommendations. Phys. Med. 2013, 29, 122–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdinand, P.; Denayrolles, Y.; Mersier, C.; Plantey, J.; Recrosio, N.; Pays, M.; Vielpeau, D. The potential for distributed sensors and optical fibre sensor networks in the electric power industry. Meas. Sci. Technol. 1990, 1, 908–916. [Google Scholar] [CrossRef]
- Yin, W.; Karimian, N.; Liu, J.; Hao, X.; Zhou, L.; Peyton, A.; Strangwood, M.; Davis, C. Measurement of electromagnetic properties of power station steels. NDT E Int. 2012, 51, 135–141. [Google Scholar] [CrossRef]
- Popovic, D.R.; Dimitrijevic, S.; Blagojevic, M.; Kejik, P.; Schurig, E.; Popovic, R.S. Three-Axis Teslameter With Integrated Hall Probe. IEEE Trans. Instrum. Meas. 2007, 56, 1396–1402. [Google Scholar] [CrossRef]
- Renella, D.P.; Dimitrijevic, S.; Spasic, S.; Popovic, R.S. High-accuracy teslameter with thin high-resolution three-axis Hall probe. Measurement 2017, 98, 407–413. [Google Scholar] [CrossRef]
- Bienkowski, P.; Trzaska, H. Electromagnetic Measurements in the Near Field; SciTech Publishing, Inc.: Raleigh, NC, USA, 2012. [Google Scholar]
- Cui, Y.; Yuan, H.; Song, X.; Zhao, L.; Liu, Y.; Lin, L. Model, Design, and Testing of Field Mill Sensors for Measuring Electric Fields Under High-Voltage Direct-Current Power Lines. IEEE Trans. Ind. Electron. 2018, 65, 608–615. [Google Scholar] [CrossRef]
- Bohnert, K.; Gabus, P.; Kostovic, J.; Brandle, H. Optical fiber sensors for the electric power industry. Opt. Lasers Eng. 2005, 43, 511–526. [Google Scholar] [CrossRef]
- Passaro, V.; Dell’Olio, F.; De Leonardis, F. Electromagnetic field photonic sensors. Prog. Quantum Electron. 2006, 30, 45–73. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, B.; Niu, B.; Yu, Z. Development and Application of Integrated Optical Sensors for Intense E-Field Measurement. Sensors 2012, 12, 11406–11434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberto, N.; Domingues, M.F.; Marques, C.; André, P.; Antunes, P. Optical Fiber Magnetic Field Sensors Based on Magnetic Fluid: A Review. Sensors 2018, 18, 4325. [Google Scholar] [CrossRef] [PubMed]
- Schatz, P.N.; McCaffery, A.J. The Faraday effect. Q. Rev. Chem. Soc. 1969, 23, 552–584. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, S.; Marciante, J.R. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber. Opt. Express 2010, 18, 5407. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Han, J.; Guo, Z.; Long, J.; Guan, B.O. A novel miniature magnetic field sensor based on Faraday effect using a heterodyning fiber grating laser. In Proceedings of the Photonics Global Conference, Singapore, 13–16 December 2013. [Google Scholar]
- Hu, N.; Cheng, L.; Yu, L.; Liang, Y.; Liang, H.; Guan, B.O. Beat frequency dependence of the sensitivity for Faraday-rotation based heterodyning fiber laser magnetic field sensor. In Proceedings of the Asia-Pacific Optical Sensors Conference, Jeju, Korea, 20–22 May 2015. [Google Scholar]
- Cheng, L.; Han, J.; Guo, Z.; Jin, L.; Guan, B.O. Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser. Opt. Lett. 2013, 38, 688–690. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Han, J.; Jin, L.; Guo, Z.; Guan, B.-O. Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence. Opt. Express 2013, 21, 30156. [Google Scholar] [CrossRef]
- Han, J.; Cheng, L.; Guo, Z.; Guan, B.O.; Long, J.; Chen, B.; Lin, X.H. Sensitivity enhanced magnetic field sensor based on Farady effect and dual-polarization fiber grating laser. In Proceedings of the Asia Pacific Optical Sensors Conference, Wuhan, China, 15–18 October 2013. [Google Scholar]
- Descamps, F.; Kinet, D.; Bette, S.; Caucheteur, C. Magnetic field sensing using standard uniform FBGs. Opt. Express 2016, 24, 26152. [Google Scholar] [CrossRef]
- Amirsolaimani, B.; Gangopadhyay, P.; Persoons, A.P.; Showghi, S.A.; LaComb, L.J.; Norwood, R.A.; Peyghambarian, N. High sensitivity magnetometer using nanocomposite polymers with large magneto-optic response. Opt. Lett. 2018, 43, 4615–4618. [Google Scholar] [CrossRef]
- Palmieri, L.; Galtarossa, A. Reflectometric Fiber Optic Sensor for Distributed Measurement of Intense Magneto-Static Fields. In Proceedings of the 10th IEEE Conference on Sensors, Limerick, Ireland, 28–31 October 2011; pp. 117–120. [Google Scholar]
- Palmieri, L.; Galtarossa, A. Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry. In Proceedings of the Third Asia Pacific Optical Sensors Conference, Sydney, Australia, 31 January–3 Feburuary 2012. [Google Scholar]
- Lee, E.W. Magnetostriction and Magnetomechanical Effects. Rep. Prog. Phys. 1955, 18, 184–229. [Google Scholar] [CrossRef]
- Clark, A.E.; Wunfogle, M.; Restorff, J.B.; Lograsso, T.A. Magnetostrictive properties of galfenol alloys under compressive stress. Mater. Trans. 2002, 43, 881–886. [Google Scholar] [CrossRef]
- Clark, A.E.; Restorff, J.B.; Wun-Fogle, M.; Lograsso, T.A.; Schlagel, D.L. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Magn. 2000, 36, 3238–3240. [Google Scholar] [CrossRef]
- Sandlund, L.; Fahlander, M.; Cedell, T.; Clark, A.E.; Restorff, J.B.; Wun-Fogle, M.; Wun-Fogle, M. Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. J. Appl. Phys. 1994, 75, 5656–5658. [Google Scholar] [CrossRef]
- Davino, D.; Visone, C.; Ambrosino, C.; Campopiano, S.; Cusano, A.; Cutolo, A. Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials. Sens. Actuators A Phys. 2008, 147, 127–136. [Google Scholar] [CrossRef]
- Nascimento, I.M.; Baptista, J.; Jorge, P.; Cruz, J.; Andrés, M.; Andrés, M. Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer. Sens. Actuators A Phys. 2015, 235, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Qiao, X.; Rong, Q.; Sun, A. Fiber-optic magnetic field sensor using a phase-shifted fiber Bragg grating assisted by a TbDyFe bar. Sens. Actuators A Phys. 2017, 261, 49–55. [Google Scholar] [CrossRef]
- Filograno, M.L.; Pisco, M.; Catalano, A.; Forte, E.; Aiello, M.; Cavaliere, C.; Soricelli, A.; Davino, D.; Visone, C.; Cutolo, A. Triaxial fiber optic magnetic field sensor for magnetic resonance imaging. J. Lightwave Technol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef]
- Liu, H.; Or, S.W.; Tam, H.Y.; Or, D.S.W. Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor. Sens. Actuators A Phys. 2012, 173, 122–126. [Google Scholar] [CrossRef]
- Quintero, S.M.M.; Braga, A.M.B.; Weber, H.I.; Bruno, A.C.; Araújo, J.F.D.F. A Magnetostrictive Composite-Fiber Bragg Grating Sensor. Sensors 2010, 10, 8119–8128. [Google Scholar] [CrossRef] [Green Version]
- Quintero, S.M.M.; Martelli, C.; Braga, A.M.B.; Valente, L.C.G.; Kato, C.C. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers. Sensors 2011, 11, 11103–11111. [Google Scholar] [CrossRef]
- He, W.; Cheng, L.; Yuan, Q.; Liang, Y.; Jin, L.; Guan, B.-O. Magnetostrictive composite material-based polarimetric heterodyning fiber-grating laser miniature magnetic field sensor. Chin. Opt. Lett. 2015, 13, 50602–50605. [Google Scholar] [CrossRef]
- He, W.; Cheng, L.; Yuan, Q.; Liang, Y.; Jin, L.; Guan, B.-O. Heterodyning fiber laser based magnetic field sensor using magnetostrictive composite material. In Proceedings of the Fifth Asia-Pacific Optical Sensors Conference, Jeju Island, Korea, 20–22 May 2015. [Google Scholar]
- Yang, M.; Dai, J.; Zhou, C.; Jiang, D. Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt. Express 2009, 17, 20777. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, H. Design of fiber magnetic field sensor based on fiber Bragg grating Fabry-Perot cavity ring-down spectroscopy. Photon. Sens. 2015, 5, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.M.; Chesini, G.; Gouveia, C.J.; Ribeiro, A.B.L.; Frazão, O.; Cordeiro, C.M.B.; Jorge, P.A.S. Magnetic field sensor with Terfenol-D thin-film coated FBG. In Proceedings of the International Conference on Optical Fiber Sensor, Beijing, China, 15–19 October 2012; p. 84213C1-4. [Google Scholar]
- Schukar, V.; Köppe, E.; Hofmann, D.; Westphal, A.; Sahre, M.; Gong, X.; Bartholmai, M.; Beck, U. Magnetic Field Detection with an Advanced FBG-based Sensor Device. Procedia Eng. 2016, 168, 1270–1274. [Google Scholar] [CrossRef]
- Smith, G.N.; Allsop, T.; Kalli, K.; Koutsides, C.; Neal, R.; Sugden, K.; Culverhouse, P.; Bennion, I. Femtosecond laser inscribed Bragg sensor in Terfenol-D coated optical fibre with ablated microslot for the detection of static magnetic fields. In Proceedings of the International Conference on Optical Fibre Sensors (OFS21), Ottawa, Canada, 15–19 May 2011; p. 77536N1-4. [Google Scholar]
- Masoudi, A.; Newson, T.P. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction. Appl. Opt. 2014, 53, 2833. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, T.; Ding, Z.; Liu, K.; Feng, B.; Jiang, J. High spatial resolution distributed optical fiber magnetic field sensor based on magnetostriction by optical frequency-domain reflectometry. In Proceedings of the Photonic Instrumentation Engineering II, San Francisco, CA, USA, 11–12 February 2015. [Google Scholar]
- Du, Y.; Liu, T.; Ding, Z.; Liu, K.; Feng, B.; Jiang, J. Distributed magnetic field sensor based on magnetostriction using Rayleigh backscattering spectra shift in optical frequency-domain reflectometry. Appl. Phys. Express 2015, 8, 012401. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Lv, R.-Q.; Zhang, Y.-N.; Wang, Q. Review on Optical Fiber Sensors Based on the Refractive Index Tunability of Ferrofluid. J. Light. Technol. 2017, 35, 3406–3412. [Google Scholar] [CrossRef]
- Agruzov, P.M.; Pleshakov, I.V.; Bibik, E.E.; Shamray, A.V. Magneto-optic effects in silica core microstructured fibers with a ferrofluidic cladding. Appl. Phys. Lett. 2014, 104, 71108. [Google Scholar] [CrossRef]
- Pu, S.; Chen, X.; Chen, Y.; Liao, W.; Chen, L.; Xia, Y. Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face. Appl. Phys. Lett. 2005, 86, 171904. [Google Scholar] [CrossRef]
- Candiani, A.; Margulis, W.; Sterner, C.; Konstantaki, M.; Pissadakis, S. Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Opt. Lett. 2011, 36, 2548. [Google Scholar] [CrossRef]
- Zhou, C.; Ding, L.; Wang, D.; Kuang, Y.; Jiang, D. Thinned fiber Bragg grating magnetic field sensor with magnetic fluid. In Proceedings of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 27–28 April 2011; p. 8034091-6. [Google Scholar]
- Dai, J.; Yang, M.; Li, X.; Liu, H.; Tong, X. Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 2011, 17, 210–213. [Google Scholar] [CrossRef]
- Zhang, N.M.Y.; Dong, X.; Shum, P.P.; Hu, D.J.J.; Su, H.; Lew, W.S.; Wei, L. Magnetic field sensor based on magnetic-fluid-coated long-period fiber grating. J. Opt. 2015, 17, 65402. [Google Scholar] [CrossRef]
- Gao, L.; Zhu, T.; Deng, M.; Chiang, K.S.; Sun, X.; Dong, X.; Hou, Y. Long-Period Fiber Grating Within D-Shaped Fiber Using Magnetic Fluid for Magnetic-Field Detection. IEEE Photon. J. 2012, 4, 2095–2104. [Google Scholar]
- Luo, J.; Zhang, G.; Xie, N.; Wang, T.; Gu, Y.; Gong, S.; Wang, C. A Magnetic Sensor Based on a Hybrid Long-Period Fiber Grating and a Magnetic Fluid. IEEE Photon. Technol. Lett. 2015, 27, 998–1001. [Google Scholar] [CrossRef]
- Zheng, J.; Dong, X.; Zu, P.; Shao, L.-Y.; Chan, C.C.; Cui, Y.; Shum, P.P. Magnetic field sensor using tilted fiber grating interacting with magnetic fluid. Opt. Express 2013, 21, 17863. [Google Scholar] [CrossRef] [PubMed]
- Narasimman, S.; Balakrishnan, L.; Alex, Z.C. Fiber optic magnetic field sensor using Co doped ZnO nanorods as cladding. RSC Adv. 2018, 8, 18243–18251. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Liu, D.; Li, D. Magnetic field sensor based on asymmetric optical fiber taper and magnetic fluid. Sens. Actuators A Phys. 2014, 211, 55–59. [Google Scholar] [CrossRef]
- Deng, M.; Huang, C.; Liu, D.; Jin, W.; Zhu, T. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Express 2015, 23, 20668–20674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiao, X.; Yang, H.; Wang, R.; Rong, Q.; Lim, K.-S.; Ahmad, H. All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid. Appl. Opt. 2017, 56, 200. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Dong, X.; Chan, C.C.; Shum, P.P.; Su, H. Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer. Opt. Commun. 2015, 336, 5–8. [Google Scholar] [CrossRef]
- Layeghi, A.; Latifi, H.; Frazão, O. Magnetic Field Sensor Based on Nonadiabatic Tapered Optical Fiber with Magnetic Fluid. IEEE Photon. Technol. Lett. 2014, 26, 1904–1907. [Google Scholar] [CrossRef]
- Luo, L.; Lahoubi, M.; Pu, S.; Tang, J.; Zeng, X. Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid. Opt. Express 2015, 23, 18133–18142. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Dong, S. Magnetic Field Sensing Based on Magnetic-Fluid-Clad Fiber-Optic Structure with Up-Tapered Joints. IEEE Photon. J. 2014, 6, 1–6. [Google Scholar]
- Xu, F.-T.; Luan, P.-P.; Jia, K.-S.; Zhang, A.-L. An optical fiber magnetic field sensor based on fiber spherical structure interferometer coated by magnetic fluid. Optoelectron. Lett. 2015, 11, 379–381. [Google Scholar] [CrossRef]
- Tong, Z.; Luan, P.; Cao, Y.; Zhang, W.; Li, L. Optical fiber magnetic field sensor based on cascaded down-taper and spherical structure. Opt. Eng. 2015, 54, 87106. [Google Scholar] [CrossRef]
- Lin, W.; Miao, Y.; Zhang, H.; Liu, B.; Liu, Y.; Song, B. Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects. Appl. Phys. Lett. 2013, 103, 151101. [Google Scholar] [CrossRef]
- Rao, J.; Pu, S.; Yao, T.; Su, D. Ultrasensitive Magnetic Field Sensing Based on Refractive-Index-Matched Coupling. Sensors 2017, 17, 1590. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Pu, S.; Rao, J.; Zhao, Y.; Li, Y.; Yao, T. Temperature self-compensative all-fiber magnetic field sensing structure based on no-core fiber cascaded with fiber Bragg gratings. Opt. Laser. Eng. 2019, 119, 26–29. [Google Scholar] [CrossRef]
- Pu, S.; Mao, L.; Yao, T.; Gu, J.; Lahoubi, M.; Zeng, X. Microfiber Coupling Structures for Magnetic Field Sensing with Enhanced Sensitivity. IEEE Sens. J. 2017, 17, 1. [Google Scholar] [CrossRef]
- Xia, J.; Wang, F.; Luo, H.; Wang, Q.; Xiong, S.; Passaro, V.M.N. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure. Sensors 2016, 16, 620. [Google Scholar] [CrossRef]
- Ji, H.; Pu, S.; Wang, X.; Yu, G.; Wang, N.; Wang, H. Magnetic field sensing based on capillary filled with magnetic fluids. Appl. Opt. 2012, 51, 6528–6538. [Google Scholar] [CrossRef]
- Wang, H.; Pu, S.; Wang, N.; Dong, S.; Huang, J. Magnetic field sensing based on singlemode–multimode–singlemode fiber structures using magnetic fluids as cladding. Opt. Lett. 2013, 38, 3765–3768. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Chen, J.; Shi, F.; Chen, D.; Ren, Z.; Peng, B. Magnetic field fiber sensor based on the magneto-birefringence effect of magnetic fluid. Opt. Commun. 2016, 374, 76–79. [Google Scholar] [CrossRef]
- Jiang, Z.; Dong, J.; Hu, S.; Zhang, Y.; Chen, Y.; Luo, Y.; Zhu, W.; Qiu, W.; Lu, H.; Guan, H.; et al. High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Opt. Lett. 2018, 43, 4743–4746. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Kavungal, V.; Ahmed, S.S.; Farrell, G.; Semenova, Y. Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid. Opt. Lett. 2015, 40, 4983–4986. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Jothibasu, S.; Zhuang, Y.; Zhu, C.; Huang, J. Rayleigh backscattering based macrobending single mode fiber for distributed refractive index sensing. Sens. Actuators B Chem. 2017, 248, 346–350. [Google Scholar] [CrossRef]
- Qadri, S.B.; Wu, D.H.; Garzarella, A. Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications. Appl. Phys. Lett. 2009, 94, 221113. [Google Scholar]
- Bentini, G.G.; Bianconi, M.; Chiarini, M.; Correra, L.; Sada, C.; Mazzoldi, P.; Argiolas, N.; Bazzan, M.; Guzzi, R. Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization. J. Appl. Phys. 2002, 92, 6477–6483. [Google Scholar] [CrossRef]
- Wooten, E.; Kissa, K.; Yi-Yan, A.; Murphy, E.; Lafaw, D.; Hallemeier, P.; Maack, D.; Attanasio, D.; Fritz, D.; McBrien, G.; et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, B.; Yu, Z.; Chen, W. Design and application of an integrated electro-optic sensor for intensive electric field measurement. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 312–319. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, Y.; Chen, W.; Zhang, B. Measurement of electric field distribution along composite insulators by integrated optical electric field sensor. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 302–310. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, B.; Yu, Z.; Niu, B.; Hua, Y. Integrated optical E -field sensor based on balanced Mach–Zehnder interferometer. Opt. Eng. 2011, 50, 114404. [Google Scholar] [CrossRef]
- Toney, J.E.; Pollick, A.; Retz, J.; Sriram, S. Noncontact electro-optic near field probe for surface electric field profiling. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–2 November 2016; pp. 1–3. [Google Scholar]
- Yang, Q.; Sun, S.; Han, R.; Sima, W.; Liu, T. Intense transient electric field sensor based on the electro-optic effect of LiNbO3. AIP Adv. 2015, 5, 107130. [Google Scholar] [CrossRef]
- Han, C.; Dong, S.; Son, H.; Ding, H. A novel all-fiber electric field sensor based on tapered fiber-slab waveguide coupler. Instrum. Sci. Technol. 2014, 42, 278–289. [Google Scholar] [CrossRef]
- Seng, F.; Stan, N.; Chadderdon, S.; Josephson, C.; King, R.; Shumway, L.; Selfridge, R.; Schultz, S. Optical Electric Field Sensor using Push-Pull for Vibration Noise Reduction. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015; pp. 1–3. [Google Scholar]
- Seng, F.; Stan, N.; Josephson, C.; King, R.; Shumway, L.; Selfridge, R.; Schultz, S. Push–pull slab coupled optical sensor for measuring electric fields in a vibrational environment. Appl. Opt. 2015, 54, 5203. [Google Scholar] [CrossRef] [PubMed]
- Stan, N.; Seng, F.; Shumway, L.; King, R.; Selfridge, R.; Schultz, S. High electric field measurement using slab-coupled optical sensors. Appl. Opt. 2016, 55, 603. [Google Scholar] [CrossRef]
- Stan, N.; King, R.; Josephson, C.; Shumway, L.; Hammond, A.; Johnston, H.; Velasco, I.; Seng, F.; Schultz, S.M. Optical Sensing of Electric Fields in Harsh Environments. J. Light. Technol. 2017, 35, 669–676. [Google Scholar]
- Chadderdon, S.; Gibson, R.; Selfridge, R.H.; Schultz, S.M.; Wang, W.C.; Forber, R.; Luo, J.; Jen, A.K.-Y. Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab. Appl. Opt. 2011, 50, 3505–3512. [Google Scholar] [CrossRef] [PubMed]
- Togo, H.; Kukutsu, N.; Shimizu, N.; Nagatsuma, T. Sensitivity-Stabilized Fiber-Mounted Electrooptic Probe for Electric Field Mapping. J. Lightwave Technol. 2008, 26, 2700–2705. [Google Scholar] [CrossRef]
- Gaeremynck, Y.; Gaborit, G.; Duvillaret, L.; Ruaro, M.; Lecoche, F. Two electric-field components measurement using a 2-port pigtailed electro-optic sensor. Appl. Phys. Lett. 2011, 99, 141102. [Google Scholar] [CrossRef]
- Barbieri, L.; Gondola, M.; Potenza, M.; Villa, A.; Malgesini, R. A sensor for vector electric field measurements through a nonlinear anisotropic optical crystal. Rev. Sci. Instrum. 2017, 88, 113114. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers. Sens. Actuators A Phys. 2011, 167, 54–59. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber. IEEE Photon. Technol. Lett. 2011, 23, 408–410. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements. Appl. Opt. 2011, 50, 2628. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.-N.; Lv, R.-Q.; Li, J. Electric Field Sensor Based on Photonic Crystal Cavity with Liquid Crystal Infiltration. J. Lightwave Technol. 2017, 35, 3440–3446. [Google Scholar] [CrossRef]
- Zhu, T.; Ou, Z.; Han, M.; Deng, M.; Chiang, K.S. Propylene Carbonate Based Compact Fiber Mach–Zehnder Interferometric Electric Field Sensor. J. Lightwave Technol. 2013, 31, 1566–1572. [Google Scholar] [CrossRef]
- Han, C.; Lv, F.; Sun, C.; Ding, H. Silica microwire-based interferometric electric field sensor. Opt. Lett. 2015, 40, 3683–3686. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.-J.; Ko, M.O.; Kim, J.-H.; Jeon, M.Y. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor. Opt. Commun. 2018, 410, 637–642. [Google Scholar] [CrossRef]
- Ko, M.O.; Kim, S.-J.; Kim, J.-H.; Jeon, M.Y. Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon. In Proceedings of the 23rd International Conference on Optical Fiber Sensors, Santander, Spain, 2–6 June 2014. [Google Scholar]
- Lee, H.J.; Kim, S.-J.; Ko, M.O.; Kim, J.-H.; Jeon, M.Y. Tunable multiwavelength fiber laser based on nematic liquid crystal device for fiber-optic electric field sensor. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 14–19 May 2017. [Google Scholar]
- Tabassum, R.; Gupta, B.D. SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations. Opt. Commun. 2016, 367, 23–34. [Google Scholar] [CrossRef]
- Chen, X.; Du, F.; Lao, J.; Zhang, X.; Zhang, Z.; Chen, C.; Guo, T.; Liu, F.; Guan, B.-O.; Li, J. Liquid Crystal-Embedded Tilted Fiber Grating Electric Field Intensity Sensor. J. Lightwave Technol. 2017, 35, 3347–3353. [Google Scholar] [CrossRef]
- Marignetti, F.; De Santis, E.; Avino, S.; Tomassi, G.; Giorgini, A.; Malara, P.; De Natale, P.; Gagliardi, G. Fiber Bragg Grating Sensor for Electric Field Measurement in the End Windings of High-Voltage Electric Machines. IEEE Trans. Ind. Electron. 2016, 63, 2796–2802. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.Y.; Wang, Y.S.; Liu, H.W. Fiber-Optic Electric Field Sensor Based on Electrostriction Effect. Appl. Mech. Mater. 2012, 187, 235–240. [Google Scholar] [CrossRef]
- Anirudh, H.; Reddy, M.V.; Prasad, R.L.N.S.; Sobha, B. DC electric field measurement using FBG sensor. In Proceedings of the Workshop on Recent Advances in Photonics (WRAP), Bangalore, India, 16–17 December 2015; pp. 1–4. [Google Scholar]
- Liu, Q.; Zhang, Z.; Fan, X.; Du, J.; Ma, L.; He, Z. A Novel Optical Fiber Electric Field Sensor. In Proceedings of the Asia Communications and Photonics Conference 2014, Shanghai, China, 11 November 2014. [Google Scholar]
- Yao, Y.; Yi, B.; Xiao, J.; Li, Z. FBG based intelligent sensors and structure for electrical power system. In Proceedings of the International Conference on Smart Materials and Nanotechnology in Engineering, Harbin, China, 1–4 July 2007. [Google Scholar]
- Floridia, C.; Borin, F.; Rosolem, J.B.; Nallin, F.E.; Bezerra, U.H.; Tupiassu, A.A.A. Temperature independent electrical field optical grating based sensor for high voltage applications. In Proceedings of the 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Salvador, Brazil, 29 October–1 November 2007. [Google Scholar]
- Zhang, K.; Zhao, H.; Yang, Y.; Zhang, W. High Voltage Electrostatic Sensor Based on Fabry-Perot Interferometer. Acta Opt. Sin. 2014, 34, 1106002. [Google Scholar] [CrossRef]
- Javernik, A.; Donlagic, D. Miniature, micro-machined, fiber-optic Fabry-Perot voltage sensor. Opt. Express 2019, 27, 13280–13291. [Google Scholar] [CrossRef] [PubMed]
- Roncin, A.; Shafai, C.; Swatek, D. Electric field sensor using electrostatic force deflection of a micro-spring supported membrane. Sens. Actuators A Phys. 2005, 123, 179–184. [Google Scholar] [CrossRef]
- Kainz, A.; Steiner, H.; Schalko, J.; Jachimowicz, A.; Kohl, F.; Stifter, M.; Beigelbeck, R.; Keplinger, F.; Hortschitz, W. Distortion-free measurement of electric field strength with a MEMS sensor. Nat. Electron. 2018, 1, 68–73. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Jia, S.; Bian, J.; Zhang, S.; Liu, J.; Zhou, X. Recent Progress on Electromagnetic Field Measurement Based on Optical Sensors. Sensors 2019, 19, 2860. https://doi.org/10.3390/s19132860
Peng J, Jia S, Bian J, Zhang S, Liu J, Zhou X. Recent Progress on Electromagnetic Field Measurement Based on Optical Sensors. Sensors. 2019; 19(13):2860. https://doi.org/10.3390/s19132860
Chicago/Turabian StylePeng, Jun, Shuhai Jia, Jiaming Bian, Shuo Zhang, Jianben Liu, and Xing Zhou. 2019. "Recent Progress on Electromagnetic Field Measurement Based on Optical Sensors" Sensors 19, no. 13: 2860. https://doi.org/10.3390/s19132860