Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (368)

Search Parameters:
Keywords = electro-optic effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1792 KB  
Article
Simultaneously Achieving SBS Suppression and PGC Demodulation Using a Phase Modulator in a Remote Interferometric Fiber Sensing System
by Hantao Li, Xiaoyang Hu, Dongying Wang, Jianfei Wang, Mo Chen, Wei Chen, Qiang Bian and Zhou Meng
Photonics 2025, 12(10), 967; https://doi.org/10.3390/photonics12100967 - 29 Sep 2025
Abstract
Stimulated Brillouin scattering (SBS) suppression and phase demodulation are two fundamental issues in remote interferometric fiber sensing systems. A method is proposed for achieving simultaneous SBS suppression and phase-generated carrier (PGC) demodulation in remote interferometric fiber sensing systems, with only the use of [...] Read more.
Stimulated Brillouin scattering (SBS) suppression and phase demodulation are two fundamental issues in remote interferometric fiber sensing systems. A method is proposed for achieving simultaneous SBS suppression and phase-generated carrier (PGC) demodulation in remote interferometric fiber sensing systems, with only the use of an electro-optic phase modulator (PM). A single-frequency laser is phase-modulated by a PM to generate multi-sideband light, which can suppress SBS in long-haul fibers and generate PGC combined with the optical fiber interferometer. Then, the phase signal of the optical fiber interferometer can be demodulated by the PGC demodulation method. A detailed theoretical analysis and the experimental results are presented to confirm the feasibility of the method. The results show that the proposed method can achieve high-performance PGC demodulation with much higher bandwidth and larger dynamic range than the conventional method. Meanwhile, the SBS and its induced phase noise can be suppressed effectively. This work presents a simple setup for SBS suppression and PGC demodulation in a remote interferometric fiber sensing system. The proposed method shows great potential for application in remote and large-scale interferometric fiber sensing systems. Full article
(This article belongs to the Special Issue Emerging Trends in Optical Fiber Sensors and Sensing Techniques)
Show Figures

Figure 1

16 pages, 1577 KB  
Review
Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate
by Jingsong Wang, Xun Lu, Di Qiao and Xingjuan Zhao
Crystals 2025, 15(10), 846; https://doi.org/10.3390/cryst15100846 - 28 Sep 2025
Abstract
Lithium niobate (LN) materials have become a key platform for constructing core optoelectronic devices such as electro-optic (EO) modulators, optical frequency combs, and integrated optical waveguides, owing to their broad transparent window, mature waveguide processes, and excellent electro-optic effect. They demonstrate revolutionary application [...] Read more.
Lithium niobate (LN) materials have become a key platform for constructing core optoelectronic devices such as electro-optic (EO) modulators, optical frequency combs, and integrated optical waveguides, owing to their broad transparent window, mature waveguide processes, and excellent electro-optic effect. They demonstrate revolutionary application value in light source generation, signal transmission, and intensity modulation of optical communication systems, and are hailed as the “silicon of the photonics field,” attracting significant attention from both academia and industry. Especially with the commercialization of high-quality thin-film lithium niobate (TFLN) materials, the performance of thin-film optoelectronic devices based on waveguide structures has achieved leapfrog improvements, with their loss characteristics and modulation bandwidth far exceeding those of traditional bulk material devices. This paper systematically combs the photonic properties of LN materials, introduces in detail the electro-optic effect and electro-optic modulation principle of LN electro-optic modulators, reviews some recent research achievements of scholars, focuses on expounding the preparation processes of waveguide-based TFLN, the types of waveguide-based optoelectronic devices, and the research progress of these devices, and discusses and compares the advantages and development potential of different routes. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3445 KB  
Article
Hybrid Actuation MEMS Micromirror with Decoupled Piezoelectric Fast Axis and Electromagnetic Slow Axis for Crosstalk Suppression
by Haoxiang Li, Jiapeng Hou, Zheng Gong, Huijun Yu, Yue Liu and Wenjiang Shen
Micromachines 2025, 16(9), 1072; https://doi.org/10.3390/mi16091072 - 22 Sep 2025
Viewed by 124
Abstract
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning [...] Read more.
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning patterns that degrade image quality. To tackle this issue, a hybrid actuation scheme is proposed in which a piezoelectric actuator drives the fast axis through an S-shaped spring structure, achieving a resonance frequency of 792 Hz, while the slow axis is independently driven by an electromagnetic actuator operating in quasi-static mode. Finite element simulations and experimental measurements validate that the proposed decoupled design significantly suppresses mechanical crosstalk. When the fast axis is driven to a 40° optical scan angle, the hybrid system reduces the parasitic slow-axis deflection (typically around 1.43°) to a negligible level, thereby producing a clean single-line scan. The piezoelectric fast axis exhibits a quality factor of Q = 110, while the electromagnetic slow axis achieves a linear 20° deflection at 20 Hz. This hybrid design facilitates a distortion-free field of view measuring 40° × 20° with uniform line spacing, presenting a straightforward and effective solution for high-precision scanning applications such as LiDAR (Light Detection and Ranging) and structured light projection. Full article
Show Figures

Figure 1

16 pages, 2431 KB  
Article
Visual Performance and Photobiological Effects of White LED Systems Based on Spectral Compensation
by Xuehua Shen, Huanting Chen, Bin Chen, Xiaoxi Ji and Fangming Qin
Photonics 2025, 12(9), 917; https://doi.org/10.3390/photonics12090917 - 14 Sep 2025
Viewed by 242
Abstract
The visual performance and photobiological effects of white LED systems based on spectral compensation are discussed, specifically focusing on the total optical power, the ratio of scotopic vision luminous flux to photopic vision luminous flux (S/P), the blue light hazard (BLH), and the [...] Read more.
The visual performance and photobiological effects of white LED systems based on spectral compensation are discussed, specifically focusing on the total optical power, the ratio of scotopic vision luminous flux to photopic vision luminous flux (S/P), the blue light hazard (BLH), and the circadian action factor (CAF). Theoretical models are established by integrating the spectral power distribution (SPD) with spectral sensitivity functions associated with the human visual system, and meanwhile, the impacts of LEDs’ electro-thermal characteristics on the mixed spectral structure and optical properties are analyzed. As experimental results demonstrate, an excellent agreement is shown between the calculated and measured values of the total optical power, S/P, BLH, and CAF, in terms of both values and variation trends. These proposed models are expected to serve as effective tools for understanding the visual perception and non-visual biological effects in specific illumination environments. Moreover, they can offer valuable reference frameworks for the development of lighting solutions that are more human-centered and health-oriented. Full article
Show Figures

Figure 1

14 pages, 4679 KB  
Article
Rapid Dynamic Separation of Radial and Azimuthal Polarization Components in Circular Airy Vortex Beams via Linear Electro-Optic Effect in Uniaxial Crystals
by Guoliang Zheng, Tiefeng He, Zikun Xu, Jiawen Li, Xuhui Zhang, Lili Wan and Qingyang Wu
Photonics 2025, 12(9), 894; https://doi.org/10.3390/photonics12090894 - 5 Sep 2025
Viewed by 338
Abstract
This paper presents a rapid approach for the dynamic separation of radial polarization (R-pol) and azimuthal polarization (A-pol) components in circular Airy vortex beams (CAVBs) by utilizing the linear electro-optic (EO) effect in uniaxial crystals. By applying an external electric field along the [...] Read more.
This paper presents a rapid approach for the dynamic separation of radial polarization (R-pol) and azimuthal polarization (A-pol) components in circular Airy vortex beams (CAVBs) by utilizing the linear electro-optic (EO) effect in uniaxial crystals. By applying an external electric field along the z-axis of a strontium barium niobate (SBN) crystal, tunable spatial separation of the R-pol and A-pol components is achieved. Under positive electric fields, the crystal maintains negative uniaxial properties with increased birefringence, extending the focal separation distance. Conversely, negative electric fields initially reduce the birefringence of the crystal; further increases in negative field strength will transition the crystal to a positive uniaxial state, subsequently enhancing birefringence and restoring focal separation. Experimental simulations demonstrate a focal separation of 1.4 mm at ±15 kV/mm, with R-pol focusing first at +15 kV/mm and A-pol preceding at −15 kV/mm. The polarization distributions at the foci confirm the successful separation of the two components. This approach overcomes the static limitation of conventional polarization splitters in separating R-pol and A-pol components, showing significant potential for optical manipulation, high-resolution imaging, and quantum information processing. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

12 pages, 2232 KB  
Article
Electric Control of Photonic Spin Hall Effect in Surface Plasmon Resonance Systems for Multi-Functional Sensing
by Jiaye Ding, Ruizhao Li and Jie Cheng
Sensors 2025, 25(17), 5383; https://doi.org/10.3390/s25175383 - 1 Sep 2025
Viewed by 481
Abstract
The photonic spin Hall effect (PSHE) has emerged as a powerful metrological approach for precision measurements. Dynamic manipulation of PSHE through external stimuli could substantially expand its applications. In this work, we present a simple and active modulation scheme for PSHE in a [...] Read more.
The photonic spin Hall effect (PSHE) has emerged as a powerful metrological approach for precision measurements. Dynamic manipulation of PSHE through external stimuli could substantially expand its applications. In this work, we present a simple and active modulation scheme for PSHE in a surface plasmon resonance (SPR) structure by exploiting electric-field-tunable refractive indices of electro-optic materials. By applying an electric field, the enhancement of PSHE spin shifts is observed, and the dual-field control can further amplify these spin shifts through synergistic effects in this SPR structure. Notably, various operation modes of external electric field enable the real-time switching between two high-performance sensing functionalities (refractive index detection and angle measurement). Therefore, our designed PSHE sensor based on SPR structure with a simple structure of only three layers not only makes up for the complex structure in multi-functional sensors, but more importantly, this platform establishes a new paradigm for dynamic PSHE manipulation while paving the way for advanced multi-functional optical sensing technology. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 4071 KB  
Article
Electrostatic MEMS Phase Shifter for SiN Photonic Integrated Circuits
by Seyedfakhreddin Nabavi, Michaël Ménard and Frederic Nabki
J. Sens. Actuator Netw. 2025, 14(5), 88; https://doi.org/10.3390/jsan14050088 - 29 Aug 2025
Viewed by 797
Abstract
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged [...] Read more.
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged in a comb drive configuration. The design incorporates suspended serpentine silicon nitride (SiN) optical waveguides. Through extensive numerical simulations, it is shown that the change in the effective refractive index (neff) of the optical waveguide is a function of the voltage applied to the electrostatic actuators and that such neff tuning can be achieved for a broad range of wavelengths. Implemented within one arm of an unbalanced Mach–Zehnder interferometer (MZI), the phase shifter achieves a phase change of π when the stressed optical path measures 4.7 mm, and the actuators are supplied with 80 V DC and consume almost no power. This results in a half-wave voltage-length product (VπL) of 37.6 V·cm. Comparative analysis with contemporary optical phase shifters highlights the proposed design’s superior power efficiency, compact footprint, and simplified fabrication process, making it a highly efficient component for reconfigurable MEMS-based silicon nitride photonic integrated circuits. Full article
Show Figures

Figure 1

9 pages, 1428 KB  
Article
In Situ OBIC Mapping to Investigate Native Defect Dynamics in GaInN/GaN-Based Light-Emitting Diodes
by Dong-Guang Zheng, Jian-Feng Zhang, Hao-Min Yu and Dong-Pyo Han
Photonics 2025, 12(9), 861; https://doi.org/10.3390/photonics12090861 - 27 Aug 2025
Viewed by 433
Abstract
Native defects significantly impair the electro-optical performance of GaInN/GaN-based light-emitting diodes (LEDs). Therefore, precise characterization of their properties, such as energy levels, capture kinetics, capture cross-sections, and spatial distributions, is crucial for understanding their physical origins following improvement in performance. However, modeling the [...] Read more.
Native defects significantly impair the electro-optical performance of GaInN/GaN-based light-emitting diodes (LEDs). Therefore, precise characterization of their properties, such as energy levels, capture kinetics, capture cross-sections, and spatial distributions, is crucial for understanding their physical origins following improvement in performance. However, modeling the impact of various defects on the electrical and optical characteristics of LEDs still remains a complex challenge. This study proposes a laser-based measurement technique for the accurate localization and screening of defects in GaInN/GaN-based LEDs by establishing a correlation model between laser excitation and defect response, which enables real-time monitoring of defect dynamics during device degradation, while simultaneously evaluating the effects of the defect state dynamics on the electro-optical characteristics of LED devices. The experimental results indicate that defects located at different spatial positions lead to distinct degradation mechanisms. Full article
Show Figures

Figure 1

19 pages, 2843 KB  
Article
Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties
by Jyotirmoy Deb and Pratim Kumar Chattaraj
Chemistry 2025, 7(4), 126; https://doi.org/10.3390/chemistry7040126 - 7 Aug 2025
Viewed by 563
Abstract
This study investigates the influence of vacancy engineering and nitrogen doping on the structural, electronic, and optical properties of T-graphene fragments (TFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT). A central vacancy and five pyridinic nitrogen doping configurations are explored to [...] Read more.
This study investigates the influence of vacancy engineering and nitrogen doping on the structural, electronic, and optical properties of T-graphene fragments (TFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT). A central vacancy and five pyridinic nitrogen doping configurations are explored to modulate the optoelectronic behavior. All systems are thermodynamically stable, exhibiting tunable HOMO–LUMO gaps, orbital distributions, and charge transfer characteristics. Optical absorption spectra show redshifts and enhanced oscillator strengths in doped variants, notably v-NTF2 and v-NTF4. Nonlinear optical (NLO) analysis reveals significant enhancement in both static and frequency-dependent responses. v-NTF2 displays an exceptionally high first-order hyperpolarizability (⟨β⟩ = 1228.05 au), along with a strong electro-optic Pockels effect (β (−ω; ω, 0)) and second harmonic generation (β (−2ω; ω, ω)). Its third-order response, γ (−2ω; ω, ω, 0), also exceeds 1.2 × 105 au under visible excitation. Conceptual DFT descriptors and energy decomposition analysis further supports the observed trends in reactivity, charge delocalization, and stability. These findings demonstrate that strategic nitrogen doping in vacancy-engineered TFs is a powerful route to tailor electronic excitation, optical absorption, and nonlinear susceptibility. The results offer valuable insight into the rational design of next-generation carbon-based materials for optoelectronic, photonic, and NLO device applications. Full article
(This article belongs to the Special Issue Modern Photochemistry and Molecular Photonics)
Show Figures

Figure 1

19 pages, 5335 KB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Viewed by 656
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 1298 KB  
Article
Effect of Deuteration on the Temperature Dependence of the Quadratic Electro-Optic Effect in KDP Crystals
by Marek Izdebski and Rafał Ledzion
Materials 2025, 18(14), 3290; https://doi.org/10.3390/ma18143290 - 12 Jul 2025
Viewed by 364
Abstract
The results of precise measurements of the temperature dependencies of quadratic electro-optic coefficients, namely g1111g1122 and no3g1111ne3g3311, in KH2PO4 (KDP) and KD2PO4 [...] Read more.
The results of precise measurements of the temperature dependencies of quadratic electro-optic coefficients, namely g1111g1122 and no3g1111ne3g3311, in KH2PO4 (KDP) and KD2PO4 (DKDP) crystals at a wavelength of 632.8 nm are presented. We consider electro-optic coefficients describing changes in the optical impenetrability tensor resulting from an applied electric field, as well as intrinsic electro-optic coefficients defined in terms of induced polarization. The results show significant differences in the values of the analogous coefficients for the KDP and DKDP crystals and their temperature dependencies. Therefore, the quadratic electro-optic effect in KDP-type crystals cannot be easily described based solely on the contribution of PO4 tetrahedra, as assumed in current models of the linear effect. Moreover, the values of the intrinsic coefficients in the KDP and DKDP crystals differ even more than the corresponding usual electro-optic coefficients, which contradicts the conventional belief in their lower variability. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

21 pages, 2568 KB  
Article
Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation
by Minseok Seo, Jinwook Jung and Dong-Geol Choi
Remote Sens. 2025, 17(13), 2260; https://doi.org/10.3390/rs17132260 - 1 Jul 2025
Viewed by 1340
Abstract
Floods, exacerbated by climate change, necessitate timely and accurate situational awareness to support effective disaster response. While electro-optical (EO) satellite imagery has been widely employed for flood assessment, its utility is significantly limited under conditions such as cloud cover or nighttime. Synthetic Aperture [...] Read more.
Floods, exacerbated by climate change, necessitate timely and accurate situational awareness to support effective disaster response. While electro-optical (EO) satellite imagery has been widely employed for flood assessment, its utility is significantly limited under conditions such as cloud cover or nighttime. Synthetic Aperture Radar (SAR) provides consistent imaging regardless of weather or lighting conditions but it remains challenging for human analysts to interpret. To bridge this modality gap, we present diffusion-based SAR-to-EO image translation (DSE), a novel framework designed specifically for enhancing the interpretability of SAR imagery in flood scenarios. Unlike conventional GAN-based approaches, our DSE leverages the Brownian Bridge Diffusion Model to achieve stable and high-fidelity EO synthesis. Furthermore, it integrates a self-supervised SAR denoising module to effectively suppress SAR-specific speckle noise, thereby improving the quality of the translated outputs. Quantitative experiments on the SEN12-FLOOD dataset show that our method improves PSNR by 3.23 dB and SSIM by 0.10 over conventional SAR-to-EO baselines. Additionally, a user study with SAR experts revealed that flood segmentation performance using synthetic EO (SynEO) paired with SAR was nearly equivalent to using true EO–SAR pairs, with only a 0.0068 IoU difference. These results confirm the practicality of the DSE framework as an effective solution for EO image synthesis and flood interpretation in SAR-only environments. Full article
(This article belongs to the Special Issue Deep Learning Innovations in Remote Sensing)
Show Figures

Figure 1

7 pages, 656 KB  
Communication
Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates
by Grazia Giuseppina Politano
Crystals 2025, 15(7), 603; https://doi.org/10.3390/cryst15070603 - 27 Jun 2025
Viewed by 400
Abstract
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis [...] Read more.
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis revealed a slight but measurable broadening (~0.7 cm−1) of the Si TO phonon mode at 514 cm−1, indicating local interfacial strain. Cyclic voltammetry measurements showed a substantial increase in photocurrent in comparison to pristine silicon substrates. These effects are attributed to a GO-induced p-type inversion layer and enhanced interfacial charge transfer. The results suggest that GO can serve as a functional interfacial layer for improving silicon-based optoelectronic and photoelectrochemical devices. Full article
(This article belongs to the Special Issue Optical Characterization of Functional Materials)
Show Figures

Figure 1

26 pages, 4670 KB  
Review
A Review of Three-Dimensional Electric Field Sensors
by Xiaonan Li, Yu Gu, Zehao Li, Zijian He, Pengfei Yang and Chunrong Peng
Micromachines 2025, 16(7), 737; https://doi.org/10.3390/mi16070737 - 24 Jun 2025
Cited by 1 | Viewed by 3407
Abstract
Three-dimensional electric field sensors (3D EFSs) can simultaneously measure electric field components in three mutually orthogonal directions and comprehensively capture the spatial distribution and dynamic changes of the electric field. They can be widely used in atmospheric science, smart grids, aerospace, target detection, [...] Read more.
Three-dimensional electric field sensors (3D EFSs) can simultaneously measure electric field components in three mutually orthogonal directions and comprehensively capture the spatial distribution and dynamic changes of the electric field. They can be widely used in atmospheric science, smart grids, aerospace, target detection, and other fields. This paper deeply analyzes the latest progress in 3D EFSs, focusing on four major types of sensors: DC field mill, electro-optic effect, capacitive sensing, and microelectromechanical system (MEMS). It elaborates on their working principles, structural design, and decoupling calibration methods. At the same time, the advantages and disadvantages of various types of 3D EFSs and their applications in different fields are analyzed. Finally, the challenges faced by 3D EFS technology and its future development direction are discussed. Full article
Show Figures

Figure 1

38 pages, 6561 KB  
Review
Emerging Trends in Thermo-Optic and Electro-Optic Materials for Tunable Photonic Devices
by Muhammad A. Butt
Materials 2025, 18(12), 2782; https://doi.org/10.3390/ma18122782 - 13 Jun 2025
Cited by 2 | Viewed by 2431
Abstract
Tunable photonic devices are increasingly pivotal in modern optical systems, enabling the dynamic control over light propagation, modulation, and filtering. This review systematically explores two prominent classes of materials, thermo-optic and electro-optic, for their roles in such tunable devices. Thermo-optic materials utilize refractive [...] Read more.
Tunable photonic devices are increasingly pivotal in modern optical systems, enabling the dynamic control over light propagation, modulation, and filtering. This review systematically explores two prominent classes of materials, thermo-optic and electro-optic, for their roles in such tunable devices. Thermo-optic materials utilize refractive index changes induced by temperature variations, offering simple implementation and broad material compatibility, although often at the cost of slower response times. In contrast, electro-optic materials, particularly those exhibiting the Pockels and Kerr effects, enable rapid and precise refractive index modulation under electric fields, making them suitable for high-speed applications. The paper discusses the underlying physical mechanisms, material properties, and typical figures of merit for each category, alongside recent advancements in organic, polymeric, and inorganic systems. Furthermore, integrated photonic platforms and emerging hybrid material systems are highlighted for their potential to enhance performance and scalability. By evaluating the tradeoffs in speed, power consumption, and integration complexity, this review identifies key trends and future directions for deploying thermo-optic and electro-optic materials in the next generation tunable photonic devices. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

Back to TopTop