Soil Water Sensor Performance and Corrections with Multiple Installation Orientations and Depths under Three Agricultural Irrigation Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Agronomic Management
2.3. Soil Water Sensor Installation and Layout
2.4. Sensor Performance Comparisons
3. Results and Discussion
3.1. Vertical Soil Water Dynamics and Water Storage in the Soil Profile Using Neutron Moisture Meters
3.2. Soil Water Sensor Performance Using Factory Calibration
3.3. Comparison of Integrated Soil Profile Water Storage Using Factory Calibration under Three Irrigation Treatments
3.4. Field Corrections of Integrated Soil Profile Water Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Disclaimer
Conflicts of Interest
References
- Colaizzi, P.D.; Gowda, P.H.; Marek, T.H.; Porter, D.O. Irrigation in the Texas High Plains: A brief history and potential reductions in demand. Irrig. Drain. 2008, 58, 257–274. [Google Scholar] [CrossRef]
- Marek, T.H.; Amosson, S.H.; Bretz, F.E.; Guerrero, B.; Kotara, R. 2011 Panhandle regional water plan task 2 report: Agricultural water demand projections. In Technical Report for Texas Water Development Board and Region A Panhandle Regional Planning Group through Freese and Nichols, Inc. AREC #09-21; Texas AgriLife Research and Extension Center: Amarillo, TX, USA, 2009; p. 83. [Google Scholar]
- Claeys, H.; Inzé, D. The agony of choice: How plants balance growth and survival under water-limiting conditions. Plant Physiol. 2013, 162, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, P.; Stirzaker, R.J. Irrigation Scheduling by Soil Water Status. In Encyclopedia of Water Science; Stewart, B.A., Howell, T.A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2003; pp. 528–531. [Google Scholar]
- National Resource Conservation Service (NRCS), Agricultural Water Enhancement Program Project Proposals Approved for Fiscal Year 2009; U.S. Department of Agriculture: Washington, DC, USA. Available online: http://www.nrcs.usda.gov/programs/awep/2009projects.html (accessed on 25 March 2019).
- Caldwell, T.G.; Bongiovanni, T.; Cosh, M.H.; Halley, C.; Young, M.H. Field and laboratory evaluation of the CS655 soil water content sensor. Vadose Zone J. 2018, 17, 170214. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil moisture remote sensing: State-of-the-science. Vadose Zone J. 2017, 16. [Google Scholar] [CrossRef]
- Hignett, C.; Evett, S. Direct and surrogate measures of soil water content. In Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation, and Sensor Technology; Evett, S.R., Heng, L.K., Moutonnet, P., Nguyen, M.L., Eds.; IAEA-TCS-30; International Atomic Energy Agency: Vienna, Austria, 2008; ISSN 1018-5518. [Google Scholar]
- Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric loss and calibration of the Hydra Probe soil water sensor. Vadose Zone J. 2005, 4, 1070–1079. [Google Scholar] [CrossRef]
- Evett, S.R.; Tolk, J.A.; Howell, T.A. Soil profile water content determination: Sensor accuracy, axial response, calibration, temperature dependence, and precision. Vadose Zone J. 2006, 5, 894–907. [Google Scholar] [CrossRef]
- Paige, G.B.; Keefer, T.O. Comparison of field performance of multiple soil moisture sensors in a semi-arid rangeland. J. Am. Water Resour. Assoc. 2008, 44, 121–135. [Google Scholar] [CrossRef]
- Kammerer, G.; Nolze, R.; Rodney, M.; Loiskandl, W. Performance of Hydra Probe and MPS-1 soil water sensors in tropical tested in lab and field. J. Water Resour. Prot. 2014, 6, 1207–1219. [Google Scholar] [CrossRef]
- Ojo, E.R.; Bullock, P.R.; Fitzmaurice, J. Field performance of five soil moisture instruments in heavy clay soils. Soil Sci. Soc. Am. J. 2015, 79, 20–29. [Google Scholar]
- Plauborg, F.; Iversen, B.V.; Lærke, P.E. In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils. Vadose Zone J. 2005, 4, 1037–1047. [Google Scholar] [CrossRef]
- Chow, L.; Xing, Z.; Rees, H.W.; Meng, F.; Monteith, J.; Stevens, L. Field performance of nine soil water content sensors on a sandy loam soil in New Brunswick, Maritime Region, Canada. Sensors 2009, 9, 9398–9413. [Google Scholar] [CrossRef] [PubMed]
- Klocke, N.L.; Currie, R.S.; Tomsicek, D.J.; Koehn, J. Corn yield response to deficit irrigation. Trans. ASABE 2011, 54, 931–940. [Google Scholar] [CrossRef]
- Hao, B.; Xue, Q.; Marek, T.H.; Jessup, K.E.; Hou, X.; Xu, W.; Bynum, E.D.; Bean, B.W. Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains. Agric. Water Manag. 2015, 155, 11–21. [Google Scholar] [CrossRef]
- Howell, T.A.; Copeland, K.S.; Schneider, A.D.; Dusek, D.A. Sprinkler irrigation management for corn-southern great plains. Trans. ASABE 1989, 32, 147–155. [Google Scholar] [CrossRef]
- Schlegel, A.J.; Assefa, Y.; O’Brien, D.; Lamm, F.R.; Haag, L.A.; Stone, L.R. Comparison of corn, grain sorghum, soybean, and sunflower under limited irrigation. Agron. J. 2016, 108, 670–679. [Google Scholar] [CrossRef]
- Trout, T.J.; Bausch, W.C. USDA-ARS Colorado maize water productivity data set. Irrig. Sci. 2017, 35, 241–249. [Google Scholar] [CrossRef]
- Varble, J.L.; Chávez, J.L. Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado. Agric. Water Manag. 2011, 101, 93–106. [Google Scholar] [CrossRef]
- Unger, P.W.; Pringle, F.B. Pullman Soils: Distribution Importance, Variability, and Management; Bulletin B-1372; Texas Agricultural Experiment Station: College Station, TX, USA, 1981. [Google Scholar]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef]
- Tolk, J.A.; Evett, S.R. Lower limits of crop water use in three soil textural classes. Soil Sci. Soc. Am. J. 2012, 76, 607–616. [Google Scholar] [CrossRef]
- American Society of Civil Engineers-Environmental & Water Resources Institute (ASCE-EWRI). The ASCE Standardized Reference Evapotranspiration Equation; Technical Committee report to the Environmental and Water Resources Institute of the American Society of Civil Engineers from the Task Committee on Standardization of Reference Evapotranspiration; ASCE-EWRI, 1801 Alexander Bell Drive: Reston, VA, USA, 2005; p. 173. [Google Scholar]
- Bell, J.P.; Dean, T.J.; Hodnett, G.C. Soil moisture measurement by an improved capacitance technique, Part II. Field techniques, evaluation and calibration. J. Hydrol. 1987, 93, 79–90. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Evett, S.R.; Lascano, R.J. Comments on J. Singh et al., performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil. Agric. Water Manag. 2018, 196, 87–98. [Google Scholar]
- Evett, S.R.; Howell, T.A.; Steiner, J.L.; Cresap, J.L. Evapotranspiration by soil water balance using TDR and neutron scattering. In Management of Irrigation and Drainage Systems, Integrated Perspectives; Allen, R.G., Neale, C.M.U., Eds.; American Society of Civil Engineers: New York, NY, USA, 1993; pp. 914–921. [Google Scholar]
- Addiscott, T.M.; Whitmore, A.P. Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J. Agric. Sci. 1987, 109, 141–157. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics notes: Measurement error. BMJ 1996, 312, 1654. [Google Scholar] [CrossRef] [PubMed]
- De willigen, P.; Neeteson, J.J. Comparison of six simulation models for the nitrogen cycle in the soil. Fert. Res. 1985, 8, 157–171. [Google Scholar] [CrossRef]
- Wonnacott, T.H.; Wonnacott, R.J. Introductory Statistics; John Wiley & Sons: New York, NY, USA, 1969; pp. 234–254. [Google Scholar]
- Schwartz, R.C.; Baumhardt, R.L.; Evett, S.R. Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res. 2010, 110, 221–229. [Google Scholar] [CrossRef]
- Datta, S.; Taghvaeian, S.; Ochsner, T.E.; Moriasi, D.; Gowda, P.H.; Steiner, J. Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma. Sensors 2018, 18, 3786. [Google Scholar] [CrossRef] [PubMed]
Day of Year (DOY) | Date | 100% ETc Treatment | 75% ETc Treatment | 50% ETc Treatment |
---|---|---|---|---|
166 | 6/15/2018 | 307.1 | 303.5 | 299.7 |
170 | 6/19/2018 | 312.4 | 310.2 | 307.7 |
173 | 6/22/2018 | 297.3 | 299.7 | 294.0 |
176 | 6/25/2018 | 310.7 | 306.7 | 288.4 |
178 | 6/27/2018 | 291.5 | 298.0 | 275.1 |
180 | 6/29/2018 | 282.3 | 289.3 | 265.7 |
186 | 7/5/2018 | 300.8 | 296.4 | 269.3 |
191 | 7/10/2018 | 306.1 | 292.6 | 257.7 |
198 | 7/17/2018 | 293.4 | 278.4 | 245.3 |
201 | 7/20/2018 | 268.9 | 244.2 | 219.0 |
205 | 7/24/2018 | 279.5 | 250.9 | 218.8 |
206 | 7/25/2018 | 292.4 | 262.1 | 229.6 |
210 | 7/29/2018 | 296.0 | 282.8 | 229.8 |
214 | 8/2/2018 | 283.3 | 257.8 | 221.0 |
222 | 8/10/2018 | 281.8 | 239.8 | 226.3 |
229 | 8/17/2018 | 247.9 | 216.5 | 207.2 |
234 | 8/22/2018 | 289.2 | 262.6 | 241.3 |
240 | 8/28/2018 | 273.0 | 235.9 | 224.1 |
243 | 8/31/2018 | 271.2 | 226.7 | 218.7 |
248 | 9/5/2018 | 246.4 | 212.3 | 212.7 |
257 | 9/14/2018 | 237.4 | 211.3 | 212.9 |
262 | 9/19/2018 | 229.9 | 206.8 | 212.5 |
268 | 9/25/2018 | 229.4 | 209.8 | 217.8 |
Minimum value | 229.4 | 206.8 | 207.2 | |
Maximum value | 312.4 | 310.2 | 307.7 | |
Average value | 279.5 | 260.6 | 243.2 |
Sensor (Treatment) | Installation Orientation | MD (%) | RMSE (%) | SD (%) | Slope | Intercept | R2 |
---|---|---|---|---|---|---|---|
Acclima 315L (n = 23) | |||||||
100% ETc | Horizontal insertion | 7.51 a | 9.43 | 5.69 | 0.68 b | 15.62 c | 0.23 |
Laid horizontal | −7.37 a | 8.66 | 4.54 | 0.43 b | 7.06 | 0.20 | |
Vertical insertion | −6.45 a | 9.26 | 6.65 | 1.26 b | −12.99 | 0.42 | |
75% ETc | Horizontal insertion | 5.84 a | 6.84 | 3.56 | 0.62 b | 14.04 c | 0.50 |
Laid horizontal | −1.66 | 3.47 | 3.05 | 0.62 b | 6.53 c | 0.62 | |
Vertical insertion | −4.47 a | 5.82 | 3.72 | 0.73 b | 1.23 | 0.52 | |
50% ETc | Horizontal insertion | −2.32 a | 4.79 | 4.19 | 0.32 | 9.70 c | 0.16 |
Laid horizontal | −3.50 a | 4.26 | 2.45 | 0.51 b | 5.21 c | 0.70 | |
Vertical insertion | −4.97 a | 5.87 | 3.11 | 0.74 b | −0.27 | 0.52 | |
Decagon GS1 (n = 23) | |||||||
100% ETc | Horizontal insertion | 6.29 a | 8.25 | 5.33 | 1.49 b | −6.21 | 0.65 |
Laid horizontal | 6.66 a | 7.65 | 3.76 | 1.07 b | 4.96 | 0.61 | |
Vertical insertion | 7.31 a | 8.22 | 3.78 | 0.73 b | 14.13 c | 0.45 | |
75% ETc | Horizontal insertion | 3.63 a | 4.85 | 3.21 | 0.60 b | 12.17 c | 0.58 |
Laid horizontal | 2.57 | 3.80 | 2.79 | 1.03 b | 1.89 | 0.77 | |
Vertical insertion | 12.68 a | 13.04 | 3.04 | 0.54 b | 22.45 c | 0.63 | |
50% ETc | Horizontal insertion | 7.51 a | 8.00 | 2.74 | 0.75 b | 11.92 c | 0.60 |
Laid horizontal | −2.47 a | 4.93 | 4.26 | 1.05 b | −3.29 | 0.51 | |
Vertical insertion | 7.35 a | 8.14 | 3.50 | 1.04 b | 6.72 | 0.60 | |
Campbell Scientific 655 | |||||||
100% ETc (n = 23) | Horizontal insertion | 13.71 a | 14.43 | 4.49 | 0.56 b | 24.84 c | 0.27 |
Laid horizontal | 6.57 a | 8.53 | 5.44 | 0.52 b | 18.85 c | 0.17 | |
Vertical insertion | 8.14 a | 11.62 | 8.30 | 1.39 b | −1.70 | 0.36 | |
75% ETc (n = 23) | Horizontal insertion | 7.26 a | 8.53 | 4.48 | 1.10 b | 5.07 c | 0.60 |
Laid horizontal | −4.65 a | 5.54 | 3.01 | 0.74 b | 0.96 | 0.64 | |
Vertical insertion | 14.82 a | 15.26 | 3.64 | 0.87 b | 17.59 c | 0.59 | |
50% ETc (n = 17) | Horizontal insertion | 11.85 a | 12.28 | 3.25 | 0.37 | 22.08 c | 0.074 |
Laid horizontal | 1.43 | 3.05 | 2.69 | 0.37 | 11.54 c | 0.12 | |
Vertical insertion | −2.20 a | 4.62 | 4.06 | 0.59 | 4.48 | 0.10 | |
Watermark 200SS | |||||||
100% ETc (n = 23) | Horizontal insertion | −1.58 | 4.19 | 3.88 | 0.50 b | 11.20 c | 0.33 |
Laid horizontal | −2.28 | 3.78 | 3.01 | 0.54 b | 9.29 c | 0.54 | |
Vertical insertion | −1.22 | 4.31 | 4.13 | 0.48 b | 11.88 c | 0.28 | |
75% ETc (n = 23) | Horizontal insertion | −1.97 | 3.97 | 3.44 | 0.41 b | 10.73 c | 0.55 |
Laid horizontal | −0.18 | 3.40 | 3.40 | 0.42 b | 12.15 c | 0.56 | |
Vertical insertion | −1.52 | 3.65 | 3.32 | 0.44 b | 10.54 c | 0.58 | |
50% ETc (n = 17) | Horizontal insertion | −1.32 | 2.48 | 2.09 | 0.087 | 16.07 c | 0.19 |
Laid horizontal | 1.37 | 2.49 | 2.08 | 0.12 | 15.57 c | 0.16 | |
Vertical insertion | 1.08 | 2.41 | 2.15 | 0.05 | 16.42 c | 0.18 |
Sensor (Treatment) | Installation Orientation | MD (%) | RMSE (%) | SD (%) | Slope b | Intercept | R2 |
---|---|---|---|---|---|---|---|
Acclima 315L (n = 23) | |||||||
100% ETc | Horizontal insertion | 2.04 | 3.17 | 2.42 | 1.36 | −9.92 | 0.73 |
Laid horizontal | −3.92 a | 6.40 | 5.07 | 2.19 | −43.18 c | 0.70 | |
Vertical insertion | −9.35 a | 12.25 | 7.91 | 2.77 | −67.68 c | 0.58 | |
75% ETc | Horizontal insertion | −0.75 | 2.36 | 2.23 | 1.09 | −3.61 | 0.79 |
Laid horizontal | −8.44 a | 9.89 | 5.16 | 1.22 | −15.44 | 0.47 | |
Vertical insertion | −12.51 a | 14.31 | 6.95 | 2.08 | −46.27 c | 0.69 | |
50% ETc | Horizontal insertion | 0.088 | 2.04 | 2.04 | 1.28 | −8.55 c | 0.89 |
Laid horizontal | −9.76 a | 10.38 | 3.54 | 0.77 | −2.80 | 0.42 | |
Vertical insertion | −16.17 a | 17.48 | 6.62 | 2.35 | −57.34 c | 0.82 | |
Decagon GS1 (n = 23) | |||||||
100% ETc | Horizontal insertion | −0.50 | 5.79 | 5.77 | 2.73 | −57.50 c | 0.83 |
Laid horizontal | −2.74 | 6.87 | 6.30 | 2.52 | −52.69 c | 0.67 | |
Vertical insertion | 5.03 a | 5.57 | 2.38 | 1.31 | −5.10 | 0.71 | |
75% ETc | Horizontal insertion | 3.19 a | 3.84 | 2.14 | 1.01 | 2.79 | 0.78 |
Laid horizontal | −3.84 a | 6.08 | 4.71 | 1.80 | −28.80 c | 0.80 | |
Vertical insertion | −3.77 | 4.82 | 3.02 | 1.35 | −14.67 c | 0.80 | |
50% ETc | Horizontal insertion | −0.21 | 5.06 | 5.05 | 1.67 | −20.56 c | 0.68 |
Laid horizontal | −8.31 a | 8.59 | 2.16 | 1.08 | −10.65 c | 0.78 | |
Vertical insertion | −0.58 | 3.08 | 3.02 | 1.42 | −13.27 c | 0.81 | |
Campbell Scientific 655 | |||||||
100% ETc (n = 23) | Horizontal insertion | 8.57 a | 9.03 | 2.86 | 1.65 | −12.70 | 0.79 |
Laid horizontal | 0.62 | 5.03 | 4.99 | 2.34 | −43.45 c | 0.77 | |
Vertical insertion | 2.90 | 9.36 | 8.90 | 3.93 | −93.39 c | 0.87 | |
75% ETc (n = 23) | Horizontal insertion | 6.54 a | 6.89 | 2.16 | 1.09 | 3.76 | 0.80 |
Laid horizontal | −15.49 a | 15.77 | 2.95 | 0.96 | −14.18 c | 0.62 | |
Vertical insertion | −5.76 a | 9.62 | 7.71 | 2.30 | −46.69 c | 0.71 | |
50% ETc (n = 17) | Horizontal insertion | 9.61 a | 9.72 | 1.42 | 0.39 | 27.03 c | 0.77 |
Laid horizontal | −13.08 a | 13.31 | 2.43 | 1.43 | −25.40 c | 0.66 | |
Vertical insertion | −0.94 | 1.82 | 1.56 | 0.32 | 18.37 c | 0.69 | |
Watermark 200SS | |||||||
100% ETc (n = 23) | Horizontal insertion | −8.69 a | 9.05 | 2.56 | 1.29 | −18.22 c | 0.67 |
Laid horizontal | −9.16 a | 10.06 | 4.16 | 1.52 | −26.39 c | 0.53 | |
Vertical insertion | −10.01 a | 10.49 | 3.11 | 1.52 | −27.12 c | 0.68 | |
75% ETc (n = 23) | Horizontal insertion | −11.01 a | 11.22 | 2.16 | 0.73 | −2.57 | 0.70 |
Laid horizontal | −11.85 a | 12.08 | 2.34 | 0.64 | −0.48 | 0.65 | |
Vertical insertion | −11.67 a | 11.92 | 2.41 | 0.74 | −3.35 | 0.64 | |
50% ETc (n = 17) | Horizontal insertion | −11.10 a | 11.24 | 1.75 | 0.22 | 11.15 c | 0.65 |
Laid horizontal | −11.26 a | 11.41 | 1.81 | 0.19 | 11.89 c | 0.60 | |
Vertical insertion | −11.13 a | 11.28 | 1.81 | 0.18 | 12.18 c | 0.67 |
Sensor (Treatment) | Installation orientation | MD (%) | RMSE (%) | SD (%) | Slope b | Intercept | R2 |
---|---|---|---|---|---|---|---|
Acclima 315L (n = 23) | |||||||
100% ETc | Horizontal insertion | 2.02 | 2.60 | 1.64 | 1.47 | −12.84 c | 0.96 |
Laid horizontal | −6.85 a | 8.28 | 4.65 | 2.06 | −40.68 c | 0.75 | |
Vertical insertion | −9.12 a | 11.14 | 6.39 | 2.52 | −57.56 c | 0.72 | |
75% ETc | Horizontal insertion | 0.42 | 1.87 | 1.83 | 0.97 | 1.31 | 0.79 |
Laid horizontal | −11.73 a | 12.14 | 3.13 | 1.15 | −16.40 c | 0.65 | |
Vertical insertion | −9.57 a | 10.74 | 4.87 | 1.47 | −23.90 c | 0.58 | |
50% ETc | Horizontal insertion | −1.52 | 3.55 | 3.21 | 1.61 | −19.29 c | 0.90 |
Laid horizontal | −13.38 a | 13.60 | 2.47 | 0.53 | 0.36 | 0.63 | |
Vertical insertion | −8.83 a | 9.48 | 3.45 | 1.68 | −28.57 c | 0.90 | |
Decagon GS1 (n = 23) | |||||||
100% ETc | Horizontal insertion | −4.78 a | 8.46 | 6.97 | 2.76 | −61.14 c | 0.75 |
Laid horizontal | −4.03 | 7.95 | 6.85 | 2.79 | −61.10 c | 0.78 | |
Vertical insertion | 3.60 | 4.39 | 2.51 | 1.40 | −9.28 | 0.78 | |
75% ETc | Horizontal insertion | 2.71 a | 3.27 | 1.83 | 1.01 | 2.43 | 0.80 |
Laid horizontal | −16.67 a | 17.55 | 5.48 | 1.82 | −41.85 c | 0.67 | |
Vertical insertion | −6.60 a | 8.25 | 4.95 | 1.61 | −25.43 c | 0.64 | |
50% ETc | Horizontal insertion | 4.33 a | 4.43 | 0.98 | 1.10 | 1.52 | 0.96 |
Laid horizontal | −13.50 a | 14.10 | 4.08 | 1.62 | −31.47 c | 0.80 | |
Vertical insertion | 2.84 | 3.25 | 1.57 | 1.24 | −4.09 | 0.94 | |
Campbell Scientific 655 | |||||||
100% ETc (n = 23) | Horizontal insertion | 10.77 a | 10.94 | 1.94 | 1.33 | 0.31 | 0.84 |
Laid horizontal | 3.13 | 6.92 | 6.17 | 2.44 | −42.99 c | 0.72 | |
Vertical insertion | 0.35 | 8.62 | 8.61 | 3.71 | −86.94 c | 0.92 | |
75% ETc (n = 23) | Horizontal insertion | 3.88 a | 4.95 | 3.08 | 1.28 | −4.57 | 0.72 |
Laid horizontal | −14.77 a | 16.85 | 8.11 | 2.09 | −48.14 c | 0.53 | |
Vertical insertion | −15.99 a | 17.11 | 6.09 | 1.87 | −42.60 c | 0.63 | |
50% ETc (n = 17) | Horizontal insertion | 8.32 a | 8.40 | 1.06 | 0.72 | 15.86 c | 0.85 |
Laid horizontal | −11.69 a | 11.75 | 1.25 | 0.66 | −2.35 | 0.79 | |
Vertical insertion | −0.37 | 0.93 | 0.86 | 1.43 | −11.70 c | 0.92 | |
Watermark 200SS | |||||||
100% ETc (n = 23) | Horizontal insertion | −7.06 a | 7.38 | 2.16 | 1.19 | −13.02 c | 0.74 |
Laid horizontal | −7.85 a | 8.36 | 2.88 | 1.33 | −18.31 c | 0.67 | |
Vertical insertion | −8.29 a | 9.13 | 3.84 | 1.41 | −21.36 c | 0.56 | |
75% ETc (n = 23) | Horizontal insertion | −9.79 a | 10.01 | 2.09 | 0.77 | −2.60 | 0.68 |
Laid horizontal | −10.12 a | 10.33 | 2.10 | 0.85 | −5.61 | 0.70 | |
Vertical insertion | −10.32 a | 10.52 | 2.03 | 0.84 | −5.43 | 0.71 | |
50% ETc (n = 17) | Horizontal insertion | −9.54 a | 9.68 | 1.64 | 0.41 | 6.67 c | 0.77 |
Laid horizontal | –9.91 a | 10.10 | 1.94 | 0.27 | 9.96 c | 0.71 | |
Vertical insertion | −9.81 a | 9.97 | 1.77 | 0.36 | 7.57 c | 0.70 |
Field Correction | Equation Type | Equation | MD (%) | RMSE (%) | R2 |
---|---|---|---|---|---|
Acclima horizontal insertion (n = 69) | Linear | θv = 0.56 × θvi + 12.69 | −0.00007 | 1.90 | 0.75 |
Exponential | θv = 16.31 × | −0.065 | 1.94 | 0.73 | |
Logarithmic | θv = 16.12 × ln (θvi) − 25.15 | 0.0017 | 1.91 | 0.75 | |
Quadratic | θv = −0.0062 × (θvi)2 + 0.93 × θvi + 7.31 | 0.0026 | 1.89 | 0.75 | |
Decagon horizontal insertion (n = 69) | Linear | θv = 0.49 × θvi + 14.02 | −0.00015 | 2.47 | 0.57 |
Exponential | θv = 17.19 × | −0.074 | 2.44 | 0.55 | |
Logarithmic | θv = 14.12 × ln (θvi) − 18.91 | −0.00048 | 2.58 | 0.53 | |
Quadratic | θv = 0.016 × (θvi)2 − 0.46 × θvi + 28.22 | 0.030 | 2.40 | 0.60 | |
Decagon vertical insertion (n = 69) | Linear | θv = 0.56 × θvi + 11.71 | 0.0011 | 1.78 | 0.78 |
Exponential | θv = 15.76 × | −0.063 | 1.82 | 0.76 | |
Logarithmic | θv = 17.58 × ln (θvi) − 31.02 | −0.00048 | 1.73 | 0.79 | |
Quadratic | θv = −0.018 × (θvi)2 + 1.72 × θvi − 6.19 | −0.048 | 1.72 | 0.79 | |
Campbell Scientific horizontal insertion (n = 63) | Linear | θv = 0.55 × θvi + 8.84 | 0.0010 | 2.18 | 0.67 |
Exponential | θv = 14.27 × | −0.14 | 2.19 | 0.66 | |
Logarithmic | θv = 20.11 × ln (θvi) − 43.33 | 0.0015 | 2.19 | 0.67 | |
Quadratic | θv = −0.0001 × (θvi)2 + 0.55 × θvi + 8.69 | 0.0072 | 2.18 | 0.67 | |
Campbell Scientific vertical insertion (n = 63) | Linear | θv = 0.35 × θvi + 19.14 | 0.00048 | 2.02 | 0.72 |
Exponential | θv = 20.45 × | −0.088 | 2.09 | 0.69 | |
Logarithmic | θv = 10.40 × ln (θvi) − 5.30 | −0.00060 | 1.90 | 0.75 | |
Quadratic | θv = −0.011 × (θvi)2 + 1.04 × θvi + 9.25 | 0.035 | 1.83 | 0.77 | |
Watermark horizontal insertion (n = 63) | Linear | θv = 0.78 × θvi + 12.33 | −0.00005 | 2.04 | 0.71 |
Exponential | θv = 16.16 × | −0.066 | 2.18 | 0.69 | |
Logarithmic | θv = 18.14 × ln (θvi) − 26.18 | −0.00004 | 1.87 | 0.76 | |
Quadratic | θv = −0.057 × (θvi)2 + 3.41 × θvi − 17.03 | −0.0039 | 1.70 | 0.80 | |
Watermark laid horizontal orientation (n = 63) | Linear | θv = 0.80 × θvi + 12.11 | −0.00051 | 2.03 | 0.71 |
Exponential | θv = 16.04 × | −0.071 | 2.28 | 0.69 | |
Logarithmic | θv = 19.07 × ln (θvi) − 28.81 | 0.0016 | 1.77 | 0.78 | |
Quadratic | θv = −0.054 × (θvi)2 + 3.37 × θvi − 17.14 | −0.014 | 1.46 | 0.85 | |
Watermark vertical insertion (n = 63) | Linear | θv = 0.73 × θvi + 13.75 | −0.0011 | 2.21 | 0.66 |
Exponential | θv = 17.01 × | −0.10 | 2.42 | 0.63 | |
Logarithmic | θv = 17.64 × ln (θvi) − 24.3 | 0.00054 | 1.96 | 0.74 | |
Quadratic | θv = −0.051 × (θvi)2 + 3.19 × θvi − 14.39 | −0.012 | 1.66 | 0.81 | |
Proposed evaluation criteria | ±1.0 | <3.5 | >0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Marek, G.W.; Marek, T.H.; Heflin, K.R.; Porter, D.O.; Moorhead, J.E.; Brauer, D.K. Soil Water Sensor Performance and Corrections with Multiple Installation Orientations and Depths under Three Agricultural Irrigation Treatments. Sensors 2019, 19, 2872. https://doi.org/10.3390/s19132872
Chen Y, Marek GW, Marek TH, Heflin KR, Porter DO, Moorhead JE, Brauer DK. Soil Water Sensor Performance and Corrections with Multiple Installation Orientations and Depths under Three Agricultural Irrigation Treatments. Sensors. 2019; 19(13):2872. https://doi.org/10.3390/s19132872
Chicago/Turabian StyleChen, Yong, Gary W. Marek, Thomas H. Marek, Kevin R. Heflin, Dana O. Porter, Jerry E. Moorhead, and David K. Brauer. 2019. "Soil Water Sensor Performance and Corrections with Multiple Installation Orientations and Depths under Three Agricultural Irrigation Treatments" Sensors 19, no. 13: 2872. https://doi.org/10.3390/s19132872