Outlier Detection Using Improved Support Vector Data Description in Wireless Sensor Networks
Abstract
:1. Introduction
2. Methodology
2.1. Support Vector Data Description
2.2. Density-Compensated Support Vector Data Description
2.3. Outlier Detection Using Improved Density-Compensated SVDD
Algorithm 1. ID-SVDD outlier detection | |
Input: | Target dataset X = {x1, x2, …xi, i = 1, 2, …, n}, kernel function K(.) |
Output: | αi, R, and r. |
Begin | |
Define an array P to store relative density weight for each point. | |
for (k = 1; k ≤ n; k++) do | |
calculate Pk = ρ(xk) according to Equation (12) | |
End | |
Solve the optimization problem of (8). | |
Determine a sample whose αi is between 0 and ρ(xi)C. | |
Calculate the radius R of sphere and the distance r according to Equations (3) and (4). | |
End | |
Returnαi, R and r. |
3. Experiments
3.1. Experiment Design
3.2. Experiment Results
3.2.1. Comparison among Different Kernel Functions
3.2.2. Comparison Results of Different Datasets
3.2.3. Experimental Results on Water Quality Datasets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomes, R.D.; Queiroz, D.V.; Filho, A.C.L.; Fonseca, I.E.; Alencar, M.S. Real-time link quality estimation for industrial wireless sensor networks using dedicated nodes. Ad Hoc Netw. 2017, 59, 116–133. [Google Scholar] [CrossRef]
- Periyanayagi, S.; Sumathy, V. Swarm-based defense technique for tampering and cheating attack in WSN using CPHS. Pers. Ubiquitous Comput. 2018, 22, 1165–1179. [Google Scholar] [CrossRef]
- Alaiad, A.; Zhou, L. Patients’ Adoption of WSN-Based Smart Home Healthcare Systems: An Integrated Model of Facilitators and Barriers. IEEE Trans. Prof. Commun. 2017, 60, 4–23. [Google Scholar] [CrossRef]
- Khan, T.H.F.; Kumar, D.S. Ambient crop field monitoring for improving context based agricultural by mobile sink in WSN. J. Ambient Intell. Humaniz. Comput. 2019, 1–9. [Google Scholar] [CrossRef]
- Pierdicca, A.; Clementi, F.; Isidori, D.; Concettoni, E.; Cristalli, C.; Lenci, S. Numerical model upgrading of a historical masonry palace monitored with a wireless sensor network. Int. J. Mason. Res. Innov. 2016, 1, 74. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis of Civil Engineering Structures; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Lynch, J.P. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock Vib. Dig. 2006, 38, 91–128. [Google Scholar] [CrossRef] [Green Version]
- Federici, F.; Graziosi, F.; Faccio, M.; Colarieti, A.; Gattulli, V.; Lepidi, M.; Potenza, F. An Integrated Approach to the Design of Wireless Sensor Networks for Structural Health Monitoring. Int. J. Distrib. Sens. Netw. 2012, 8, 594842. [Google Scholar] [CrossRef]
- Guang, X.Z.; Tian, W.; Guo, J.W.; An, F.L.; Wei, J.J. Detection of Hidden Data Attacks Combined Fog Computing and Trust Evaluation Method in Sensor-Cloud System. Concurr. Comput. Pract. Exp. 2018. [Google Scholar] [CrossRef]
- You, K.W.; Hai, Y.H.; Qun, W.; An, F.L.; Tian, W. A Risk Defense Method Based on Microscopic State Prediction with Partial Information Observations in Social Networks. J. Parallel Distrib. Comput. 2019, 131, 189–199. [Google Scholar]
- Wang, T.; Zhou, J.; Liu, A.; Bhuiyan, M.Z.A.; Wang, G.; Jia, W. Fog-based Computing and Storage Offloading for Data Synchronization in IoT. IEEE Internet Things J. 2019, 6, 4272–4282. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Liu, A.; Bhuiyan, M.Z.A.; Jin, Q. A Secure IoT Service Architecture with an Efficient Balance Dynamics Based on Cloud and Edge Computing. IEEE Internet Things J. 2019, 6, 4831–4843. [Google Scholar] [CrossRef]
- Ghosal, A.; Halder, S.; Dasbit, S. A dynamic TDMA based scheme for securing query processing in WSN. Wirel. Netw. 2012, 18, 165–184. [Google Scholar] [CrossRef]
- Knorr, E.M.; Ng, R.T.; Tucakov, V. Distance-based outliers: Algorithms and applications. VLDB J. 2000, 8, 237–253. [Google Scholar] [CrossRef]
- Sheng, B.; Li, Q.; Mao, W.; Jin, W. Outlier detection in sensor networks. In Proceedings of the 8th ACM International Symposium on Mobile and Ad Hoc Networking and Computing (MobiHoc), Montreal, QC, Canada, 9–14 September 2007; pp. 219–228. [Google Scholar]
- Chen, Y.; Miao, D.; Zhang, H. Neighborhood outlier detection. Expert Syst. Appl. 2010, 37, 8745–8749. [Google Scholar] [CrossRef]
- Xie, M.; Hu, J.; Han, S.; Chen, H.H. Scalable hypergrid k-nn-based online anomaly detection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1661–1670. [Google Scholar] [CrossRef]
- Shamshirband, S.; Amini, A.; Anuar, N.B.; Mat Kiah, M.L.; Teh, Y.W.; Furnell, S. D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. Measurement 2014, 55, 212–226. [Google Scholar] [CrossRef]
- Wazid, M.; Das, A.K. An Efficient Hybrid Anomaly Detection Scheme Using K-Means Clustering for Wireless Sensor Networks. Wirel. Pers. Commun. 2016, 90, 1971–2000. [Google Scholar] [CrossRef]
- Rajasegarar, S.; Leckie, C.; Palaniswami, M. Hyperspherical cluster based distributed anomaly detection in wireless sensor networks. J. Parallel Distrib. Comput. 2014, 74, 1833–1847. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Leckie, C.; Karunasekera, S.; Rajasegarar, S. An adaptive elliptical anomaly detection model for wireless sensor networks. Comput. Netw. 2014, 64, 195–207. [Google Scholar] [CrossRef]
- Hill, D.J.; Minsker, B.S.; Amir, E. Real-time bayesian anomaly detection in streaming environmental data. Water Resour. Res. 2009, 45, 450–455. [Google Scholar] [CrossRef]
- Kang, L.; Xu, L.; Zhao, J. Co-Extracting Opinion Targets and Opinion Words from Online Reviews Based on the Word Alignment Model. IEEE Trans. Knowl. Data Eng. 2018, 27, 636–650. [Google Scholar]
- Yue, R.; Xue, X.; Liu, H.; Tan, J.; Li, X. Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance. Int. J. Theor. Phys. 2017, 56, 1–12. [Google Scholar]
- Tao, J.; Dan, H.; Yu, X. Enhanced IT2FCM algorithm using object-based triangular fuzzy set modeling for remote-sensing clustering. Comput. Geosci. 2018, 118, 14–26. [Google Scholar]
- Tax, D.; Duin, R. Support vector domain description. Pattern Recognit. Lett. 1999, 20, 1191–1199. [Google Scholar] [CrossRef]
- Shin, J.H.; Lee, B.; Park, K.S. Detection of abnormal living patterns for elderly living alone using support vector data description. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 438–448. [Google Scholar] [CrossRef]
- Bovolo, F.; Camps-Valls, G.; Bruzzone, L. A support vector domain method for change detection in multitemporal images. Pattern Recognit. Lett. 2010, 31, 1148–1154. [Google Scholar] [CrossRef]
- Khediri, I.B.; Weihs, C.; Limam, M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes. Expert Syst. Appl. 2012, 39, 2166–2171. [Google Scholar] [CrossRef]
- Liu, Y.H.; Liu, Y.C.; Chen, Y.Z. High-speed inline defect detection for TFT-LCD array process using a novel support vector data description. Expert Syst. Appl. 2011, 38, 6222–6231. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Xiao, F. Pattern recognition-based chillers fault detection method using support vector data description (SVDD). Appl. Energy 2013, 112, 1041–1048. [Google Scholar] [CrossRef]
- Lee, K.; Kim, D.W.; Lee, K.H.; Lee, D. Density-induced support vector data description. IEEE Trans. Neural Netw. 2007, 18, 284–289. [Google Scholar] [CrossRef]
- Cha, M.; Kim, J.S.; Baek, J.G. Density weighted support vector data description. Expert Syst. Appl. 2014, 41, 3343–3350. [Google Scholar] [CrossRef]
- Sun, R.; Tsung, F.A. Kernel-distance-based multivariate control charts using support vector methods. Int. J. Prod. Res. 2003, 41, 2975–2989. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, K.; Meng, Z.; Tian, M. Fault detection of aircraft based on support vector domain description. Comput. Electr. Eng. 2017, 61, 80–94. [Google Scholar] [CrossRef]
- Belghith, A.; Bowd, C.; Medeiros, F.A.; Balasubramanian, M.; Weinreb, R.N.; Zangwill, L.M. Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression. Artif. Intell. Med. 2015, 64, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, P.; Yao, Y.; Ye, X.; Xiao, Y.; Liao, L.; Wu, M.; Chen, J. Dysphonic voice pattern analysis of patients in parkinson’s disease using minimum interclass probability risk feature selection and bagging ensemble learning methods. Comput. Math. Methods Med. 2017, 2017, 4201984. [Google Scholar] [CrossRef]
- Bothorel, C.; Cruz, J.D.; Magnani, M.; Micenková, B. Clustering attributed graphs: Models, measures and methods. Netw. Sci. 2015, 3, 408–444. [Google Scholar] [CrossRef] [Green Version]
- Long, B.; Tian, S.; Wang, H. Feature vector selection method using mahalanobis distance for diagnostics of analog circuits based on ls-svm. J. Electron. Test. 2012, 28, 745–755. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, S.B. A Novel Adaptively-Robust Strategy Based on the Mahalanobis Distance for GPS/INS Integrated Navigation Systems. Sensors 2018, 18, 695. [Google Scholar] [CrossRef]
- Sensor Scope Sytem [DB/OL]. Available online: http://sensorscope.epfl.ch/index.php/Main Page (accessed on 19 December 2016).
- Luo, Y.; Li, Z.; Guo, H.; Cao, H.; Song, C.; Guo, X.; Zhang, Y. Predicting congenital heart defects: A comparison of three data mining methods. PLoS ONE 2017, 12, e0177811. [Google Scholar] [CrossRef]
- Tian, W.; Hao, L.; James, X.Z.; Mande, X. Crowdsourcing Mechanism for Trust Evaluation in CPCS based on Intelligent Mobile Edge Computing. ACM Trans. Intell. Syst. Technol. 2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.; Chen, F.; Yang, H. Weighted kernel mapping model with spring simulation based watershed transformation for level set image segmentation. Neurocomputing 2017, 249, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Zhang, H.; Khan, M.S.; Fang, M. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomed. Signal Process. Control 2018, 41, 222–232. [Google Scholar]
- Shi, P.; Li, G.; Yuan, Y.; Huang, G.; Kuang, L. Prediction of dissolved oxygen content in aquaculture using clustering-based softplus extreme learning machine. Comput. Electron. Agric. 2019, 157, 329–338. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
R | Radius of sphere |
o | Center of sphere |
C | The trade-off between sphere volume and the number of target data outside the sphere |
ξi | Slack variable |
α | Lagrange multiplier |
R | The distance between an observation datum in the feature space and center a |
θ | The mean of Parzen-window density Par(xi) |
d | The feature dimension of input data |
w | Weighting factor |
n | The number of target data |
ρi | Relative density weight of xi |
Par(xi) | Parzen-window density of xi |
mdij | Mahalanobis distance between vectors |
MS | Covariance matrix |
Mean value of xi | |
P | Relative density weight array |
TP | The number of true positive results |
TN | The number of true negative results |
FP | The number of false positive results |
FN | The number of false negative results |
m | The degree of polynomia |
δ | Bandwidth of Gaussian kernel function |
k | A constant |
e | A constant |
Datasets | Attributes | Normal Data | Outliers |
---|---|---|---|
SensorScope node12 | 2 | 1411 | 44 |
SensorScope node17 | 2 | 1309 | 137 |
water quality data | 3 | 1706 | 50 |
Different Kernel Functions | TPR (%) | TNR (%) | Accuracy (%) |
---|---|---|---|
SensorScope12 | |||
Linear | 89.3525 | 0 | 84.4898 |
Ploy | 100 | 0 | 94.5578 |
Gaussian | 99.4245 | 87.5 | 98.7755 |
Tanh | 98.1295 | 20 | 93.8776 |
SensorScope17 | |||
Linear | 38.4095 | 28.1482 | 36.5014 |
Ploy | 92.5550 | 45.9259 | 83.8843 |
Gaussian | 100 | 97.037 | 99.449 |
Tanh | 68.1895 | 0 | 55.5096 |
ID-SVDD | D-SVDD | DW-SVDD | SVDD | |
---|---|---|---|---|
Node 12 | ||||
TPR (%) | 99.4245 | 98.4173 | 70.5036 | 98.0496 |
TNR (%) | 87.5 | 100 | 82.5 | 100 |
Accuracy (%) | 98.7755 | 98.5034 | 71.1565 | 98.1788 |
Time (s) | 0.489 | 0.5329 | 0.4211 | 0.5463 |
Node 17 | ||||
TPR (%) | 100 | 98.8338 | 90.3553 | 99.3232 |
TNR (%) | 97.037 | 100 | 63.7037 | 98.5185 |
Accuracy (%) | 99.449 | 98.8981 | 85.3994 | 99.1736 |
Time (s) | 0.3794 | 0.578 | 0.4172 | 0.3763 |
pond13 | ID-SVDD | D-SVDD | DW-SVDD | SVDD |
---|---|---|---|---|
TPR (%) | 91.1374 | 89.0694 | 70.901 | 67.356 |
TNR (%) | 96.2963 | 100 | 92.5926 | 96.2963 |
Accuracy (%) | 91.3352 | 89.4886 | 71.733 | 68.4659 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, P.; Li, G.; Yuan, Y.; Kuang, L. Outlier Detection Using Improved Support Vector Data Description in Wireless Sensor Networks. Sensors 2019, 19, 4712. https://doi.org/10.3390/s19214712
Shi P, Li G, Yuan Y, Kuang L. Outlier Detection Using Improved Support Vector Data Description in Wireless Sensor Networks. Sensors. 2019; 19(21):4712. https://doi.org/10.3390/s19214712
Chicago/Turabian StyleShi, Pei, Guanghui Li, Yongming Yuan, and Liang Kuang. 2019. "Outlier Detection Using Improved Support Vector Data Description in Wireless Sensor Networks" Sensors 19, no. 21: 4712. https://doi.org/10.3390/s19214712
APA StyleShi, P., Li, G., Yuan, Y., & Kuang, L. (2019). Outlier Detection Using Improved Support Vector Data Description in Wireless Sensor Networks. Sensors, 19(21), 4712. https://doi.org/10.3390/s19214712