Porous Silicon Optical Biosensors: Still a Promise or a Failure?
Abstract
:1. Introduction
2. The Pros of PSi-Based Optical Biosensors
3. The Cons of PSi Technology
4. Conclusions and Further Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, V.S.Y.; Motesharei, K.; Dancil, K.P.S.; Sailor, M.J.; Ghadiri, M.R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Sailor, M.J. Porous Silicon in Practice: Preparation, Characterization and Applications, 1st ed.; John Wiley and sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Michael, J. Sailor Biography. Available online: http://sailorgroup.ucsd.edu/research/movies.html (accessed on 16 September 2019).
- Oton, C.J.; Dal Negro, L.; Gaburro, Z.; Pavesi, L.; Johnson, P.J.; Lagendijk, A.; Wiersma, D.S. Light propagation in one-dimensional porous silicon complex systems. Phys. Status Solidi (a) 2003, 197, 298–302. [Google Scholar] [CrossRef]
- Moretti, L.; Rea, I.; Rotiroti, L.; Rendina, I.; Abbate, G.; Marino, A.; De Stefano, L. Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. Opt. Express 2006, 14, 6264–6272. [Google Scholar] [CrossRef] [PubMed]
- Ligler, F.S.; Taitt, C.R. (Eds.) Optical Biosensors: Today and Tomorrow; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Korotcenkov, G. (Ed.) Formation and Properties. In Porous Silicon: From Formation to Application; Taylor and Fracis Group, CRC Press: Boca Raton, FL, USA, 2015; Volume 1. [Google Scholar]
- Surdo, S.; Carpignano, F.; Merlo, S.; Barillaro, G. Near-Infrared Silicon Photonic Crystals with High-Order Photonic Bandgaps for High-Sensitivity Chemical Analysis of Water–Ethanol Mixtures. ACS Sens. 2018, 3, 2223–2231. [Google Scholar] [CrossRef] [PubMed]
- Mariani, S.; Robbiano, V.; Strambini, L.M.; Debrassi, A.; Egri, G.; Dähne, L. Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing. Nat. Commun. 2018, 9, 5256. [Google Scholar] [CrossRef]
- De Stefano, L.; Rotiroti, L.; Rea, I.; Rendina, I.; Moretti, L. Quantitative measurements of hydro-alcoholic binary mixtures by porous silicon optical microsensors. Phys. Stat. Sol. (c) 2007, 4, 1941–1945. [Google Scholar] [CrossRef]
- Moretti, L.; De Stefano, L.; Rea, I.; Rendina, I. Periodic versus aperiodic: Enhancing the sensitivity of porous silicon based optical sensor. Appl. Phys. Lett. 2007, 90, 191112. [Google Scholar] [CrossRef]
- De Stefano, L.; Rendina, I.; Moretti, L.; Rossi, A.M. Time-resolved sensing of chemical species in porous silicon optical microcavity. Sens. Actuators B 2004, 100, 168–172. [Google Scholar] [CrossRef]
- De Stefano, L.; Malecki, K.; Della Corte, F.G.; Moretti, L.; Rotiroti, L.; Rendina, I. Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sens. Actuators B 2006, 114, 625–630. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Rusu, E. How to Improve the Performance of Porous Silicon-Based Gas and Vapor Sensors? Approaches and Achievements. Phys. Status Solidi A 2019. [Google Scholar] [CrossRef]
- Rea, I.; Lamberti, A.; Rendina, I.; Coppola, G.; Gioffrè, M.; Iodice, M.; Casalino, M.; De Tommasi, E.; De Stefano, L. Fabrication and Characterization of a Porous Silicon Based Microarray for Label-free Optical Monitoring of Biomolecular Interactions. J. Appl. Phys. 2010, 107, 014513. [Google Scholar] [CrossRef]
- Rea, I.; Oliviero, G.; Amato, J.; Terracciano, M.; Mayol, L.; Borbone, N.; Piccialli, G.; Rendina, I.; De Stefano, L. Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotides synthesis and detection. J. R. Soc. Interface 2013, 10, 1742–5662. [Google Scholar]
- Salonen, J.; Björkqvist, M.; Laine, E.; Niinistö, L. Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl. Surf. Sci. 2004, 225, 389–394. [Google Scholar] [CrossRef]
- Lehmann, V. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002. [Google Scholar]
- Canham, L. (Ed.) Handbook of Porous Silicon; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Pace, S.; Seantier, B.; Belamie, E.; Lautrédou, N.; Sailor, M.J.; Milhiet, P.E.; Cunin, F. Characterization of phospholipid bilayer formation on a thin film of porous SiO2 by reflective interferometric Fourier transform spectroscopy (RIFTS). Langmuir 2012, 28, 6960–6969. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Y.; Li, W.; Xiao, C.; Liu, D.; Dong, C.; Hirvonen, J.T.; Zhang, M.; Kemell, M.; Zhang, H.; et al. Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv. Mat. 2018, 30, 1703393. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Massad-Ivanir, N.; Segal, E.; Weiss, S. Porous silicon-based photonic biosensors: Current status and emerging applications. Anal. Chem. 2018, 91, 441–467. [Google Scholar] [CrossRef]
- Terracciano, M.; Rea, I.; Borbone, N.; Moretta, R.; Oliviero, G.; Piccialli, G.; De Stefano, L. Porous Silicon-Based Aptasensors: The Next Generation of Label-Free Devices for Health Monitoring. Molecules 2018, 24, 2216. [Google Scholar] [CrossRef]
- Maniya, N.H. Recent Advances in Porous Silicon Based Optical Biosensors. Rec. Adv. Mater. Sci. 2018, 53, 49–73. [Google Scholar] [CrossRef]
- Vilensky, R.; Bercovici, M.; Segal, E. Oxidized porous silicon nanostructures enabling electrokinetic transport for enhanced DNA detection. Adv. Funct. Mater. 2015, 25, 6725. [Google Scholar] [CrossRef]
- Krismastuti, F.S.; Pace, S.; Voelcker, N.H. Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection. Adv. Funct. Mater. 2014, 24, 3639. [Google Scholar] [CrossRef]
- Qiao, H.; Guan, B.; Gooding, J.J.; Reece, P.J. Protease detection using a porous silicon based Bloch surface wave optical biosensor. Opt. Express 2010, 18, 15174–15182. [Google Scholar] [CrossRef] [PubMed]
- Pacholski, C.; Perelman, L.A.; VanNieuwenhze, M.S.; Sailor, M.J. Small molecule detection by reflective interferometric Fourier transform spectroscopy (RIFTS). Phys. Status Solidi A 2009, 206, 1318–1321. [Google Scholar] [CrossRef]
- Steglich, P.; Hülsemann, M.; Dietzel, B.; Mai, A. Optical biosensors based on silicon-on-insulator ring resonators: A review. Molecules 2019, 24, 519. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Huertas, C.S.; Lechuga, L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019, 19, 71–81. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Yang, Z.; Wilkinson, J.S.; Zhou, X. Optical biosensors based on refractometric sensing schemes: A review. Biosens. Bioelectron. 2019, 144, 111693. [Google Scholar] [CrossRef]
Analyte | Probe | PSi Device | Detection Range | Sensitivity | Response Time | Ref. |
---|---|---|---|---|---|---|
DNA (15 mer) | ssDNA | Single layer | 1–10 nM | 1 nM | 20 min | [25] |
Metallo-proteinase | Peptide | Microcavity | 10−7–10−12 M | 10−19 M | 15 min | [26] |
Subtilisin | Gelatin | Bloch surface wave | 0.01 mg/mL | 1.8 pM | 20 min | [27] |
Vancomycin | Peptide | Double layer | 0.005–0.1 mg/mL | 0.005 mg/mL | 20 min | [28] |
Pros | Cons |
---|---|
Low costs and simple (but not trivial) fabrication equipment and procedures | Intrinsic limitation of the etching process |
Easy and fast read out | Spontaneous aging and chemical instability |
Integrated microelectronics compatibility | Single device calibration |
Tunable morphology, dielectric properties and surface chemistry | |
Huge specific surface area | |
Biocompatibility | |
Extreme flexibility in different application fields |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Stefano, L. Porous Silicon Optical Biosensors: Still a Promise or a Failure? Sensors 2019, 19, 4776. https://doi.org/10.3390/s19214776
De Stefano L. Porous Silicon Optical Biosensors: Still a Promise or a Failure? Sensors. 2019; 19(21):4776. https://doi.org/10.3390/s19214776
Chicago/Turabian StyleDe Stefano, Luca. 2019. "Porous Silicon Optical Biosensors: Still a Promise or a Failure?" Sensors 19, no. 21: 4776. https://doi.org/10.3390/s19214776
APA StyleDe Stefano, L. (2019). Porous Silicon Optical Biosensors: Still a Promise or a Failure? Sensors, 19(21), 4776. https://doi.org/10.3390/s19214776