A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology
Abstract
:1. Introduction
2. Design and Working Principle
2.1. Working Principle
- Standard sensor (Tx signal amplitude of 2.85 V). Useful for small or medium-sized devices and mandatory for devices with a weak connection to ground, that is, with battery.
- Booster sensor (Tx signal amplitude between 5 and 18 V) allowing bigger sensors and recognition ranges.
2.2. Microchip Sensor Design
2.3. Textile 3D Gesture Sensor Design
3. Materials and Methods
3.1. Materials
3.2. Sensor Development
3.3. Measurements
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chakraborty, B.K.; Sarma, D.; Bhuyan, M.K.; MacDorman, K.F. Review of constraints on vision-based gesture recognition for human-computer interaction. IET Comput. Vis. 2018, 12, 3–15. [Google Scholar] [CrossRef]
- Zhang, Z. Microsoft kinect sensor and its effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef]
- Malinverni, L.; Pares, N. Learning of Abstract Concepts through Full-Body Interaction: A Systematic Review. Educ. Technol. Soc. 2014, 17, 100–116. [Google Scholar]
- Lai, H.Y.; Ke, H.Y.; Hsu, Y.C. Real-time Hand Gesture Recognition System and Application. Sens. Mater. 2018, 30, 869–884. [Google Scholar] [CrossRef]
- Karim, R.A.; Zakaria, N.F.; Zulkifley, M.A.; Mustafa, M.M.; Sagap, I.; Latar, N.H.M. Telepointer technology in telemedicine: A review. Biomed. Eng. Online 2013, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Carbonaro, N.; Tognetti, A.; González, J.; de la Fuente, E.; Fraile, J.; Pérez-Turiel, J. Dynamic gesture recognition using a smart glove in hand-assisted laparoscopic surgery. Technologies 2018, 6, 8. [Google Scholar] [CrossRef]
- Singh, A.; Buonassisi, J.; Jain, S. Autonomous Multiple Gesture Recognition System for Disabled People. Int. J. Image Graph. Signal Process. 2014, 6, 39–45. [Google Scholar] [CrossRef]
- Tan, C.W.; Chin, S.W.; Lim, W.X. Game-based human computer interaction using gesture recognition for rehabilitation. In Proceedings of the 2013 IEEE International Conference on Control System, Computing and Engineering, Mindeb, Malaysia, 29 November–1 December 2013; pp. 344–349. [Google Scholar]
- Rautaray, S.S.; Agrawal, A. Interaction with virtual game through hand gesture recognition. In Proceedings of the 2011 International Conference on Multimedia, Signal Processing and Communication Technologies, Aligarh, India, 17–19 December 2011; pp. 244–247. [Google Scholar]
- Huang, Y.A.; Chen, P.; Chen, Y.; Tsau, S.; Wu, K. Employ Gesture Recognition Interface to Screen Operation in Cooking Scenario; International Association of Societies of Design Research: Tokyo, Japan, 2013; pp. 3973–3981. [Google Scholar]
- Lavanya, K.N.; Shree, D.R.; Nischitha, B.R.; Asha, T.; Gururaj, C. Gesture controlled robot. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 465–469. [Google Scholar]
- Bach, K.M.; Jaeger, M.G.; Skov, M.B.; Thomassen, N.G. You can touch, but you can’t look: Interacting with in-vehicle systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 1139–1148. [Google Scholar]
- Ohn-Bar, E.; Trivedi, M.M. Hand gesture recognition in real time for automotive interfaces: A multimodal vision-based approach and evaluations. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2368–2377. [Google Scholar] [CrossRef]
- Elliott, L.R.; Hill, S.G.; Barnes, M. Gesture-Based Controls for Robots: Overview and Implications for Use by Soldiers; US Army Research Laboratory Aberdeen Proving Ground United States: Adelphi, MD, USA, 2016. [Google Scholar]
- Khan, R.Z.; Ibraheem, N.A. Hand gesture recognition: A literature review. Int. J. Artif. Intell. Appl. 2012, 3, 161. [Google Scholar] [CrossRef]
- Shen, Z.; Yi, J.; Li, X.; Mark, L.H.P.; Hu, Y.; Wang, Z. A soft stretchable bending sensor and data glove applications. In Proceedings of the 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016; pp. 88–93. [Google Scholar]
- Ferrane, A.; Jiang, X.; Maiolo, L.; Pecora, A.; Colace, L.; Menon, C. A fabric-based wearable band for hand gesture recognition based on filament strain sensors: A preliminary investigation. In Proceedings of the 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT), Cancun, Mexico, 9–11 November 2016; pp. 113–116. [Google Scholar]
- Abraham, L.; Urru, A.; Normani, N.; Wilk, M.P.; Walsh, M.; O’Flynn, B. Hand tracking and gesture recognition using lensless smart sensors. Sensors 2018, 18, 2834. [Google Scholar] [CrossRef]
- Zhang, Y.; Harrison, C. Tomo: Wearable, low-cost, electrical impedance tomography for hand gesture recognition. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, USA, 11—15 November 2015; pp. 167–173. [Google Scholar]
- Zeng, Q.; Kuang, Z.; Wu, S.; Yang, J. A method of ultrasonic finger gesture recognition based on the micro-doppler effect. Appl. Sci. 2019, 9, 2314. [Google Scholar] [CrossRef]
- Lien, J.; Gillian, N.; Karagozler, M.E.; Amihood, P.; Schwesig, C.; Olson, E.; Raja, H.; Poupyrev, I. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 2016, 35, 142. [Google Scholar] [CrossRef]
- Sang, Y.; Shi, L.; Liu, Y. Micro hand gesture recognition system using ultrasonic active sensing. IEEE Access 2018, 6, 49339–49347. [Google Scholar] [CrossRef]
- Wang, W. Device-Free Gesture Tracking Using Acoustic Signals Motivation It is difficult to input on smart watches. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 3–7 October 2016; pp. 82–94. [Google Scholar]
- Nandakumar, R.; Iyer, V.; Tan, D.; Gollakota, S. Fingerio: Using active sonar for fine-grained finger tracking. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 1515–1525. [Google Scholar]
- Ferri, J.; Lidón-Roger, J.; Moreno, J.; Martinez, G.; Garcia-Breijo, E. A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials 2017, 10, 1450. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.S.; Castro, N.; Gonçalves, S.; Pereira, N.; Correia, V.; Lanceros-Mendez, S. Marked object recognition multitouch screen printed touchpad for interactive applications. Sensors 2017, 17, 2786. [Google Scholar] [CrossRef]
- Steiner, E. Fully Printed Transparent Capacitive Touchpads from PEDOT: PSS e. g. for Touchscreens—A Project of the HdM Stuttgart, Germany. Int. Circ. Graph. Educ. Res. 2016, 9, 18–26. [Google Scholar]
- Ferri, J.; Fuster, C.P.; Llopis, R.L.; Moreno, J.; Garcia-Breijo, E. Integration of a 2D touch sensor with an electroluminescent display by using a screen-printing technology on textile substrate. Sensors 2018, 18, 3313. [Google Scholar] [CrossRef] [PubMed]
- Cronin, S.; Doherty, G. Touchless computer interfaces in hospitals: A review. Health Inform. J. 2018, 1460458217748342. [Google Scholar] [CrossRef] [PubMed]
- Pitts, M.J.; Skrypchuk, L.; Attridge, A.; Williams, M.A. Comparing the user experience of touchscreen technologies in an automotive application. In Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Seattle, WA, USA, 17–19 September 2014. [Google Scholar]
- Aezinia, F.; Wang, Y.F.; Bahreyni, B. Touchless capacitive sensor for hand gesture detection. In Proceedings of the SENSORS, 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 546–549. [Google Scholar]
- Haslinger, L.; Wasserthal, S.; Zagar, B. A capacitive measurement system for gesture recognition. Proc. Sens. 2017, 616–620. [Google Scholar] [CrossRef]
- Wimmer, R.; Holleis, P.; Kranz, M.; Schmidt, A. Thracker—Using capacitive sensing for gesture recognition. In Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06), Lisboa, Portugal, 4–7 July 2006; p. 64. [Google Scholar]
- Grosse-Puppendahl, T.; Holz, C.; Cohn, G.; Wimmer, R.; Bechtold, O.; Hodges, S.; Smith, J.R. Finding common ground: A survey of capacitive sensing in human-computer interaction. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 3293–3315. [Google Scholar]
- Gotsch, D.; Zhang, X.; Burstyn, J.; Vertegaal, R. HoloFlex: A flexible holographic smartphone with bend input. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 3675–3678. [Google Scholar]
- Han, J.; Gu, J.; Lee, G. Trampoline: A double-sided elastic touch device for creating reliefs. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, Honolulu, HI, USA, 5–8 October 2014; pp. 383–388. [Google Scholar]
- Cherenack, K.; Van Pieterson, L. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef] [Green Version]
- Lymberis, A.; Paradiso, R. Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 5270–5273. [Google Scholar]
- Al-huda Hamdan, N.; Heller, F.; Wacharamanotham, C.; Thar, J.; Borchers, J. Grabrics: A Foldable Two-Dimensional Textile Input Controller. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 2497–2503. [Google Scholar]
- GestIC® Design Guide; DS40001716C; Microchip: Chandler, AZ, USA, 2016; ISBN 978-1-5224-0477-4. Available online: http://ww1.microchip.com/downloads/en/devicedoc/40001716c.pdf (accessed on 16 October 2018).
- MGC3030/3130 3D Tracking and Gesture Controller Data Sheet; DS40001667E; Microchip: Chandler, AZ, USA, 2017; ISBN 978-1-5224-1910-5. Available online: http://ww1.microchip.com/downloads/en/DeviceDoc/40001667E.pdf (accessed on 16 October 2018).
- Programming MGC3030/3130 in Production; DS00001934A; Microchip: Chandler, AZ, USA, 2015; ISBN 978-1-63277-397-5. Available online: http://ww1.microchip.com/downloads/en/AppNotes/00001934A.pdf (accessed on 16 October 2018).
- Aurea Graphical User Interface User’s Guide; DS40001681D; Microchip: Chandler, AZ, USA, 2015; ISBN 978-1-63276-972-5. Available online: http://ww1.microchip.com/downloads/en/DeviceDoc/40001681D.pdf (accessed on 16 October 2018).
l (mm) | w (mm) | t (mm) | Microchip (pF) | Value (pF) | |
---|---|---|---|---|---|
RxN | 91.7 | 5.0 | 0.935 | 20.00 | 33.92 ± 10.67 |
RxS | 91.7 | 5.0 | 0.935 | 20.00 | 34.66 ± 10.69 |
RxE | 70.5 | 5.0 | 0.935 | 18.00 | 30.09 ± 10.60 |
RxW | 70.5 | 5.0 | 0.935 | 18.00 | 30.62 ± 10.61 |
RxC | 85.7 | 50.5 | 0.935 | 65.00 | 68.22 ± 11.36 |
l (mm) | w (mm) | t (mm) | Microchip (pF) | Value (pF) | |
---|---|---|---|---|---|
Tx | 120 | 85 | 0.540 | 590.00 | 635.00 ± 22.70 |
l (mm) | w (mm) | t (mm) | Value (pF) | |
---|---|---|---|---|
RxN | 91.7 | 5 | 0.1512 | 34.31 ± 10.68 |
RxS | 91.7 | 5 | 0.1512 | 33.19 ± 10.66 |
RxE | 70.5 | 5 | 0.1512 | 30.30 ± 10.60 |
RxW | 70.5 | 5 | 0.1512 | 30.17 ± 10.60 |
RxC | 120.0 | 85 | 0.1512 | 62.85 ± 11.25 |
Fabric | Picture | Weft Material | Warp Material | Ligament | |
---|---|---|---|---|---|
Type A 100% Polyester | | Polyester | Polyester | Taffeta | |
Type B 50% Cotton 50% Polyester | | Cotton | Polyester | Taffeta | |
Type C 100% Cotton | | Cotton | Cotton | Twill | |
Type D 100 % Cotton | | Cotton | Cotton | Teleton | |
Type E 100% Polyester | | Polyester | Polyester | Taffeta | |
Type F 100 % Cotton | | Cotton | Cotton | Teleton | |
Type G Polyurethane | | Polyurethane | Polyurethane | Non-woven | |
Type H 100% Cotton | | Cotton | Cotton | Twill | |
Type I Polyurethane | | Polyurethane | Polyurethane | Non-woven |
Fabric | Weft Density (Thread/cm) | Warp Density (Thread/cm) | Fabric Density (Thread/cm2) | Wire Weft Diameter (µm) | Wire Warp Diameter (µm) | Thickness (µm) | Grammage (g/m2) |
---|---|---|---|---|---|---|---|
Type A | 24 | 38 | 62 | 300 | 300 | 110 ± 08 | 112 ± 4 |
Type B | 13 | 26 | 39 | 450 | 450 | 380 ± 07 | 181 ± 1 |
Type C | 26 | 34 | 60 | 300 | 300 | 470 ± 20 | 235 ± 2 |
Type D | 10 | 28 | 38 | 400 | 400 | 530 ± 10 | 312 ± 5 |
Type E | 10 | 22 | 32 | 350 | 350 | 570 ± 11 | 226 ± 4 |
Type F | 7 | 24 | 31 | 450 | 450 | 700 ± 19 | 324 ± 2 |
Type G | - | - | - | - | - | 720 ± 15 | 75 ± 1 |
Type H | 20 | 20 | 40 | 360 | 360 | 920 ± 11 | 105 ± 3 |
Type I | - | - | - | - | - | 1300 ± 16 | 152 ± 5 |
INKRON IPC-603X | |
---|---|
Sheet Resistivity (mΩ/sq/mil) | <15 |
Solids (%) | 100 |
Viscosity (Pas) | 16 @0.25 s−1 |
Curing | 130 °C–15 min |
Properties | ● High Stretchability ● Flexible |
CREATIVE 127-48D | EMS DI-7542 | INKRON IPD-670 | |
---|---|---|---|
Viscosity (Pas) | 15–20 | 7 @0.05 s−1 | 32 @2.5 s−1 |
Screens polyester [threads/inch] | 156–305 | ||
Curing | 125 °C–60 min | 0.5 J/cm2 | 130 °C–15 min |
Properties | ● Flexible | ● Flexible ● UV-Cure | ● Stretchable |
DELSTAR EU94DS | ADHESIVE FIMS UAF-445 | |
---|---|---|
Thickness (µm) | 80 | 120 |
Weight (g/m3) | 94 | - |
MVTR * upright (g/m2/24 h) @37 °C | 400 | - |
Tensile Strength MD ** (gf/cm) | 3000 | - |
Elongation at break MD ** (%) | 700 | 450 |
Dielectric | Relative Permittivity | t > εr/5 (μm) |
---|---|---|
CREATIVE 127-48D | 1.72 | 344 |
EMS DI-7542 | 5.68 | 1136 |
INKRON IPD-670 | 4.20 | 840 |
Fabric | Relative Permittivity | Thickness (µm) | t > εr/5 (μm) |
---|---|---|---|
Type A | 2.37 | 110 ± 8 | 474 |
Type B | 1.93 | 380 ± 7 | 386 |
Type C | 2.58 | 470 ± 20 | 516 |
Type D | 2.64 | 530 ± 10 | 528 |
Type E | 1.37 | 570 ± 11 | 274 |
Type F | 2.65 | 700 ± 19 | 530 |
Type G | 1.42 | 720 ± 15 | 284 |
Type H | 3.41 | 920 ± 11 | 680 |
Type I | 1.64 | 1300 ± 16 | 328 |
CTxRxN | 229.6 ± 14.6 |
CTxRxS | 261.9 ± 15.2 |
CTxRxE | 210.1 ± 14.2 |
CTxRxW | 254.3 ± 15.1 |
CTxRxC | 554.9 ± 21.1 |
CRxNGND | 219.7 ± 14.4 |
CRxSGND | 258.8 ± 15.2 |
CRxEGND | 202.8 ± 14.0 |
CRxWGND | 242.4 ± 14.8 |
CRxCGND | 449.6 ± 19.9 |
CTxGND | 1990.0 ± 13.9 |
CTxRxN | 301.0 ± 16.0 |
CTxRxS | 354.6 ± 17.1 |
CTxRxE | 276.0 ± 15.5 |
CTxRxW | 326.2 ± 16.5 |
CTxRxC | 716.2 ± 24.3 |
CRxNGND | 296.4 ± 15.9 |
CRxSGND | 357.2 ± 17.1 |
CRxEGND | 274.1 ± 15.5 |
CRxWGND | 317.9 ± 16.3 |
CRxCGND | 671.8 ± 23.4 |
CTxGND | 3430.0 ± 16.9 |
CTxRxN | 97.2 ± 11.9 |
CTxRxS | 132.4 ± 12.6 |
CTxRxE | 114.5 ± 12.2 |
CTxRxW | 110.9 ± 12.2 |
CTxRxC | 188.1 ± 13.7 |
CRxNGND | 95.1 ± 11.9 |
CRxSGND | 129.0 ± 12.5 |
CRxEGND | 111.6 ± 12.2 |
CRxWGND | 108.5 ± 12.1 |
CRxCGND | 178.6 ± 13.5 |
CTxGND | 1915.0 ± 48.3 |
DELSTAR EU94DS | ADHESIVE FILMS UAF-445 | |
---|---|---|
εr @100 kHz | 1.46 | 1.86 |
3DS-2b-TB | 3DS-2b-TC | 3DS-2b-TD | 3DS-2b-TE | 3DS-2b-TF | 3DS-2a-TG | 3DS-2a-TH | 3DS-2a-TI | |
---|---|---|---|---|---|---|---|---|
CTxRxN | 37.4 ± 10.7 | 38.4 ± 10.7 | 32.1 ± 10.6 | 37.4 ± 10.7 | 29.4 ± 10.6 | 30.8 ± 10.6 | 28.9 ± 10.6 | 15.1 ± 10.3 |
CTxRxS | 48.1 ± 10.9 | 46.0 ± 10.9 | 40.3 ± 10.8 | 48.2 ± 10.9 | 37.8 ± 10.7 | 43.3 ± 10.9 | 39.7 ± 10.8 | 19.3 ± 10.4 |
CTxRxE | 39.2 ± 10.7 | 38.4 ± 10.7 | 32.9 ± 10.6 | 38.4 ± 10.7 | 31.5 ± 10.6 | 34.1 ± 10.7 | 32.2 ± 10.6 | 15.1 ± 10.3 |
CTxRxW | 39.6 ± 10.7 | 36.4 ± 10.7 | 33.1 ± 10.6 | 41.4 ± 10.8 | 29.6 ± 10.5 | 36.7 ± 10.7 | 29.6 ± 10.6 | 16.1 ± 10.3 |
CTxRxC | 77.6 ± 11.5 | 76.4 ± 11.5 | 63.5 ± 11.2 | 83.5 ± 11.6 | 62.8 ± 11.2 | 64.9 ± 11.3 | 62.1 ± 11.2 | 34.7 ± 10.7 |
CRxNGND | 37.2 ± 10.7 | 34.4 ± 10.6 | 30.6 ± 10.6 | 37.2 ± 10.7 | 27.2 ± 10.5 | 30.6 ± 10.6 | 28.5 ± 10.6 | 15.1 ± 10.3 |
CRxSGND | 47.7 ± 10.9 | 52.1 ± 11.0 | 41.2 ± 10.8 | 45.8 ± 10.9 | 35.4 ± 10.7 | 42.8 ± 10.9 | 36.8 ± 10.7 | 19.5 ± 10.4 |
CRxEGND | 39.0 ± 10.7 | 44.3 ± 10.8 | 32.6 ± 10.6 | 38.0 ± 10.7 | 29.1 ± 10.5 | 33.8 ± 10.7 | 30.1 ± 10.6 | 15.1 ± 10.3 |
CRxWGND | 39.4 ± 10.7 | 36.4 ± 10.7 | 32.0 ± 10.6 | 42.6 ± 10.8 | 28.6 ± 10.5 | 36.4 ± 10.7 | 29.3 ± 10.6 | 16.1 ± 10.3 |
CRxCGND | 76.8 ± 11.5 | 71.5 ± 11.4 | 61.4 ± 11.2 | 80.2 ± 11.6 | 60.1 ± 11.2 | 63.8 ± 11.3 | 61.8 ± 11.2 | 34.5 ± 10.7 |
CTxGND | 2488.1 ± 59.8 | 2595.2 ± 61.9 | 1842.2 ± 46.8 | 2137.0 ± 52.7 | 2590.0 ± 61.8 | 1553.1 ± 41.1 | 2122.0 ± 52.4 | 2327.0 ± 56.5 |
Cn | Cedge | Creal | |
---|---|---|---|
3DS-2b -TB | 32.4 | 35.7 | 37.4 ± 10.7 |
3DS-2b -TC | 30.3 | 33.7 | 38.4 ± 10.7 |
3DS-2b -TD | 25.2 | 28.7 | 32.1 ± 10.6 |
3DS-2b -TE | 23.0 | 25.6 | 37.4 ± 10.7 |
3DS-2b -TF | 17.7 | 20.5 | 29.4 ± 10.6 |
3DS-2a -TG | 27.1 | 30.7 | 30.9 ± 10.6 |
3DS-2a-TH | 29.3 | 33.3 | 28.9 ± 10.6 |
3DS-2a -TI | 8.9 | 10.9 | 15.1 ± 10.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, J.; Llinares Llopis, R.; Moreno, J.; Ibañez Civera, J.; Garcia-Breijo, E. A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology. Sensors 2019, 19, 5068. https://doi.org/10.3390/s19235068
Ferri J, Llinares Llopis R, Moreno J, Ibañez Civera J, Garcia-Breijo E. A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology. Sensors. 2019; 19(23):5068. https://doi.org/10.3390/s19235068
Chicago/Turabian StyleFerri, Josue, Raúl Llinares Llopis, Jorge Moreno, Javier Ibañez Civera, and Eduardo Garcia-Breijo. 2019. "A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology" Sensors 19, no. 23: 5068. https://doi.org/10.3390/s19235068
APA StyleFerri, J., Llinares Llopis, R., Moreno, J., Ibañez Civera, J., & Garcia-Breijo, E. (2019). A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology. Sensors, 19(23), 5068. https://doi.org/10.3390/s19235068