A Low Frequency Mechanical Transmitter Based on Magnetoelectric Heterostructures Operated at Their Resonance Frequency
Abstract
:1. Introduction
2. Transmitter Construction and Operation Principal
2.1. Design and Operation
2.2. Fabrication
3. Basic Transmitter Tests and Optimizations
3.1. Verification of the Electro-Mechanical-Magnetic Effect
3.2. Effect of Number of Metglas Layers
4. Transmitted Magnetic Fields, Efficiency and Pattern Measurements
4.1. Comparison with a Small Current-Loop Antenna
4.2. Transmission Efficiency of the Magnetic Field
4.3. Pattern Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 2005, 38, R123. [Google Scholar] [CrossRef]
- Das, J.; Gao, J.; Xing, Z.; Li, J.; Viehland, D. Enhancement in the field sensitivity of magnetoelectric laminate heterostructures. Appl. Phys. Lett. 2009, 95, 092501. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Zhai, J.; Li, J.; Viehland, D. Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 2006, 89, 252904. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Matyushov, A.; Dong, C.; Chen, H.; Lin, H.; Nan, T.; Qian, Z.; Rinaldi, M.; Lin, Y.; Sun, N.X. Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection. Appl. Phys. Lett. 2017, 110, 14. [Google Scholar] [CrossRef]
- Wang, Y.J.; Gao, J.Q.; Li, M.H.; Shen, Y.; Hasanyan, D.; Li, J.F.; Viehland, D. A review on equivalent magnetic noise of magnetoelectric laminate sensors. Phil. Trans. R. Soc. A 2014, 372, 20120455. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Zhai, J.; Dong, S.; Li, J.; Viehland, D.; Odendaal, W. Modeling and detection of quasi-static nanotesla magnetic field variations using magnetoelectric laminate sensors. Meas. Sci. Technol. 2007, 19, 015206. [Google Scholar] [CrossRef]
- Wang, Y.; Gray, D.; Berry, D.; Gao, J.; Li, M.; Li, J.; Viehland, D. An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 2011, 23, 4111–4114. [Google Scholar] [CrossRef]
- Zhuang, X.; Cordier, C.; Saez, S.; Lam Chok Sing, M.; Dolabdjian, C.; Gao, J.; Li, J.F.; Viehland, D. Theoretical analysis of the intrinsic magnetic noise spectral density of magnetostrictive-piezoelectric laminated composites. J. Appl. Phys. 2011, 109, 124512. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.Q.; Shen, L.G.; Wang, Y.J.; Gray, D.; Li, J.F.; Viehland, D. Enhanced sensitivity to direct current magnetic field changes in Metglas/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminates. J. Appl. Phys. 2011, 109, 074507. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gray, D.; Berry, D.; Li, M.; Gao, J.; Li, J.; Viehland, D. Influence of interfacial bonding condition on magnetoelectric properties in piezofiber/Metglas heterostructures. J. Alloys Compd. 2012, 513, 242–244. [Google Scholar] [CrossRef]
- Li, M.; Berry, D.; Das, J.; Gray, D.; Li, J.; Viehland, D. Enhanced Sensitivity and Reduced Noise Floor in Magnetoelectric Laminate Sensors by an Improved Lamination Process. J. Am. Ceram. Soc. 2011, 94, 3738. [Google Scholar] [CrossRef]
- Dong, S.; Zhai, J. Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites. Chin. Sci. Bull. 2008, 53, 2113. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, H.; Shi, W.; Liu, G.; Wu, J.; Yang, J.; Dong, S. Enhanced Resonance Magnetoelectric Coupling in (1-1) Connectivity Composites. Adv. Mater. 2017, 29, 1606022. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.M.; Zhuang, X.; Xu, J.; Li, J.; Srinivasan, G.; Viehland, D. Importance of composite parameters in enhanced power conversion efficiency of Terfenol-D/PZT magnetoelectric gyrators. Appl. Phys. Lett. 2017, 110, 112904. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.M.; Zhuang, X.; Xu, J.; Srinivasan, G.; Li, J.; Viehland, D. Power conversion efficiency and resistance tunability in coil-magnetoelectric gyrators. Appl. Phys. Lett. 2016, 109, 202907. [Google Scholar] [CrossRef]
- Leung, C.M.; Zhuang, X.; Friedrichs, D.; Li, J.; Erickson, R.W.; Laletin, V.; Popov, M.; Srinivasan, G.; Viehland, D. Highly efficient solid state magnetoelectric gyrators. Appl. Phys. Lett. 2017, 111, 122904. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Viehland, D. Magnetoelectrics for magnetic sensor applications: Status, challenges and perspectives. Mater. Today 2014, 17, 269–275. [Google Scholar] [CrossRef]
- Leung, C.M.; Zhuang, X.; Gao, M.; Tang, X.; Xu, J.; Li, J.; Zhang, J.; Srinivasan, G.; Viehland, D. Enhanced stability of magnetoelectric gyrators under high power conditions. Appl. Phys. Lett. 2017, 111, 182901. [Google Scholar] [CrossRef]
- The Biggest Little Antenna in the World. Available online: http://arlassociates.net/Newman%20AP%20Presentation.pdf (accessed on 9 February 2019).
- A MEchanically Based Antenna (AMEBA). Available online: https://www.darpa.mil/attachments/AMEBAProposersDay_FINAL.PDF (accessed on 9 February 2019).
- Yao, Z.; Wang, Y.E.; Keller, S.; Carman, G. Bulk acoustic wave mediated multiferroic antennas: Architecture and performance bound. IEEE Trans. Antennas Propag. 2015, 63, 3335–3344. [Google Scholar] [CrossRef]
- Dong, S.; Li, J.-F.; Viehland, D. Magnetoelectric coupling, efficiency, and voltage gain effect in piezoelectric-piezomagnetic laminate composites. Front. Ferroelectric. 2006, 97–106. [Google Scholar] [CrossRef]
- Magnetic Signals Produced by Various Sources. Available online: https://www.researchgate.net/figure/Magnetic-signals-produced-by-various-sources-Biomagnetic-signals-MCG_fig1_321110235 (accessed on 9 February 2019).
- Chu, L.J. Physical limitations of omni-directional antennas. J. Appl. Phys. 1948, 19, 1163–1175. [Google Scholar] [CrossRef]
- Stutzman, L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Constantine, A. Balanis. Antenna Theory: Analysis and Design, 4th ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Leung, C.M.; Zhuang, X.; Li, J.; Bhardwaj, S.; Volakis, J.; Viehland, D. A Low Frequency Mechanical Transmitter Based on Magnetoelectric Heterostructures Operated at Their Resonance Frequency. Sensors 2019, 19, 853. https://doi.org/10.3390/s19040853
Xu J, Leung CM, Zhuang X, Li J, Bhardwaj S, Volakis J, Viehland D. A Low Frequency Mechanical Transmitter Based on Magnetoelectric Heterostructures Operated at Their Resonance Frequency. Sensors. 2019; 19(4):853. https://doi.org/10.3390/s19040853
Chicago/Turabian StyleXu, Junran, Chung Ming Leung, Xin Zhuang, Jiefang Li, Shubhendu Bhardwaj, John Volakis, and Dwight Viehland. 2019. "A Low Frequency Mechanical Transmitter Based on Magnetoelectric Heterostructures Operated at Their Resonance Frequency" Sensors 19, no. 4: 853. https://doi.org/10.3390/s19040853
APA StyleXu, J., Leung, C. M., Zhuang, X., Li, J., Bhardwaj, S., Volakis, J., & Viehland, D. (2019). A Low Frequency Mechanical Transmitter Based on Magnetoelectric Heterostructures Operated at Their Resonance Frequency. Sensors, 19(4), 853. https://doi.org/10.3390/s19040853