Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. CCI Soil Moisture Product
2.2.2. MODIS Time-Series Data
2.2.3. Other Data
2.3. Methods
2.3.1. Calculation of Soil Water Use Efficiency (SWUE)
2.3.2. Spatial Change Trend Analysis
2.3.3. Phenological Metrics Extraction
2.3.4. Correlation Analysis
3. Results
3.1. Spatial Distribution Patterns of SWUE
3.2. Temporal Variation of SWUE
3.3. Spatial Change Trends of SWUE
3.4. Effects of NDVI, LST, and Precipitation Changes on SWUE Variability
3.5. Response of SWUE to Phenological Variation
3.5.1. Spatial Distribution of SOS, LOS, and EOS
3.5.2. Partial Correlations between SWUE and Phenological Metrics
4. Discussion
4.1. Spatial and Temporal Characteristics of SWUE in the Growing Season
4.2. Relationship between SWUE, Climate, Geography, and Phenology Factors
4.3. Uncertainty
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.Q.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Molen, M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Phillips, O.L.; Reichstein, M.; et al. Drought and ecosystem carbon cycling. Agric. For. Meteorol. 2011, 151, 765–773. [Google Scholar] [CrossRef]
- Xiao, J.F.; Sun, G.; Chen, J.Q.; Chen, H.; Chen, S.P.; Dong, G.; Gao, S.H.; Guo, H.Q.; Guo, J.X.; Han, S.J.; et al. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agric. For. Meteorol. 2013, 182, 76–90. [Google Scholar] [CrossRef]
- Huang, M.T.; Piao, S.L.; Sun, Y.; Ciais, P.; Cheng, L.; Mao, J.F.; Poulter, B.; Shi, X.Y.; Zeng, Z.Z.; Wang, Y.P. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob. Chang. Biol. 2015, 21, 2366–2378. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; Wang, Q.F.; Hu, Z.M.; Zheng, H.; Li, S.G.; Sun, X.M.; Zhang, Y.P.; Yan, J.H.; Wang, H.M.; et al. Spatial variability of water use efficiency in China’s terrestrial ecosystems. Glob. Planet Chang. 2015, 129, 37–44. [Google Scholar] [CrossRef]
- Do, N.; Kang, S. Assessing drought vulnerability using soil moisture-based water use efficiency measurements obtained from multi-sensor satellite data in northeast Asia dryland regions. J. Arid Environ. 2014, 105, 22–32. [Google Scholar] [CrossRef]
- Kurc, S.A.; Small, E.E. Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour. Res. 2004, 40, 1–15. [Google Scholar] [CrossRef]
- Liu, S.C.; Chadwick, O.A.; Roberts, D.A.; Still, C.J. Relationships between gpp, satellite measures of greenness and canopy water content with soil moisture in Mediterranean-climate grassland and Oak Savanna. Appl. Environ. Soil Sci. 2011, 2011, 839028. [Google Scholar] [CrossRef]
- He, B.; Wang, H.Y.; Huang, L.; Liu, J.J.; Chen, Z.Y. A new indicator of ecosystem water use efficiency based on surface soil moisture retrieved from remote sensing. Ecol. Indic. 2017, 75, 10–16. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Brandt, M.; Wigneron, J.P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2018, 2, 827–835. [Google Scholar] [CrossRef]
- Fan, L.; Wigneron, J.P.; Xiao, Q.; Al-Yaari, A.; Wen, J.; Martin-StPaul, N.; Dupuy, J.L.; Pimont, F.; Al Bitar, A.; Fernandez-Moran, R.; et al. Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sens. Environ. 2018, 205, 210–223. [Google Scholar] [CrossRef]
- Dorigo, W.; de Jeu, R.; Chung, D.; Parinussa, R.; Liu, Y.; Wagner, W.; Fernandez-Prieto, D. Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett. 2012, 39, 18405. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Jin, M.G.; Zhao, J.Y.; Luo, Z.J. Analysis of soil catalase activity in winter wheat fields used different techniques of soil water utilization. Hydrogeol. Eng. Geol. 2003, 2, P11–P14. [Google Scholar]
- Xue, L.H.; Duan, J.J.; Wang, Z.M.; Guo, Z.W.; Lu, L.Q. Effects of different irrigation regimes on spatial-temporal distribution of roots, soil water use and yield in winter wheat. Acta Ecol. Sin. 2010, 19, P5296–P5305. [Google Scholar]
- Stöckli, R.; Vidale, P.L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 2004, 25, 3303–3330. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.X.; Wang, Y.; Zhang, Z.; Magliulo, V.; Jiang, H.; Cheng, M. Phenology plays an important role in the regulation of terrestrial ecosystem water-use efficiency in the northern hemisphere. Remote Sens. 2017, 9, 664. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhou, L.; Wang, S.Q.; Wang, X.Q. Change of growing season length and its effects on gross primary productivity in northeast China. Sci. Geogr. Sin. 2018, 38, 284–292. [Google Scholar]
- Liu, D.; Yu, C.L.; Zhao, F. Response of the water use efficiency of natural vegetation to drought in northeast China. J. Geogr. Sci. 2018, 28, 611–628. [Google Scholar] [CrossRef]
- Qiu, K.B. Estimating Regional Vegetation Gross Primary Productivity (gpp), Evapotranspiration (et), Water Use Efficiency (wue) and Their Spatial and Temporal Distribution across China; Beijing Forestry University: Beijing, China, 2015. [Google Scholar]
- Guo, Z.X.; Zhang, X.N.; Wang, Z.M.; Fang, W.H. Responses of vegetation phenology in northeast China to climate change. Chin. J. Ecol. 2010, 29, 578–585. [Google Scholar]
- Zhao, J.J.; Wang, Y.Y.; Zhang, Z.X.; Zhang, H.Y.; Guo, X.Y.; Yu, S.; Du, W.L.; Huang, F. The variations of land surface phenology in northeast china and its responses to climate change from 1982 to 2013. Remote Sens. 2016, 8, 400. [Google Scholar] [CrossRef]
- Yu, X.F.; Wang, Q.K.; Yan, H.M.; Wang, Y.; Wen, K.G.; Zhuang, D.F.; Wang, Q. Forest phenology dynamics and its responses to meteorological variations in northeast China. Adv. Meteorol. 2014. [Google Scholar] [CrossRef]
- Yu, L.X.; Liu, T.X.; Bu, K.; Yan, F.Q.; Yang, J.C.; Chang, L.P.; Zhang, S.W. Monitoring the long term vegetation phenology change in northeast China from 1982 to 2015. Sci. Rep. 2017, 7, 14770. [Google Scholar] [CrossRef]
- Zhang, W.F. Present situation and control measures of soil and water loss in northeast China. Jilin Agric. 2018, 102–103. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Kidd, R.; Haas, E. Soil Moisture ECV Product User Guide (PUG), d3.3.1 version 4.2. Available online: https://www.esa-soilmoisture-cci.org/sites/default/files/documents/public/Deliverables%20-%20CCI%20SM%202/CCI2_Soil_Moisture_D3.3.1_Product_Users_Guide_v4.2.pdf (accessed on 1 August 2018).
- Coll, C.; Wan, Z.; Galve, J.M. Temperature-based and radiance-based validations of the v5 modis land surface temperature product. J. Geophys. Res. Atmos. 2009, 114, 1–33. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. Modis Surface Reflectance User’s Guide, version 1. Available online: http://mod09val.ltdri.org/guide/MOD09_UserGuide_v1_3.pdf (accessed on 25 May 2018).
- Solano, R.; Didan, K.; Jacobson, A.; Huete, A. MODIS Vegetation Indices (MOD13) C5 User’s Guide. Available online: https://www.ctahr.hawaii.edu/grem/mod13ug/index.html (accessed on 25 May 2018).
- Heinsch, F.A.; Reeves, M.; Votava, P.; Milesi, C.; Zhao, M.; Glassy, J.; Jolly, W.M.; Bowker, C.F.; Kimball, J.S. User’s Guide Version 2.0: GPP and NPP (MOD17A2/a3) Products, Nasa Modis Land Algorithm. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.545.1730&rep=rep1&type=pdf (accessed on 25 May 2018).
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of vertical accuracy of open source digital elevation model (dem). Int. J. Appl. Earth Obs. 2013, 21, 205–217. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, J.; Liang, W.; Yang, Y.T.; Liu, Y.X. Spatial-temporal patterns of water use efficiency and climate controls in China’s loess plateau during 2000–2010. Sci. Total Environ. 2016, 565, 105–122. [Google Scholar] [CrossRef]
- Hungate, B.A.; Reichstein, M.P.; Johnson, D.; Hymus, G.; Tenhunen, J.D.; Hinkle, C.R.; Drake, B.G. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Glob. Chang. Biol. 2010, 8, 289–298. [Google Scholar] [CrossRef]
- Du, X.Z. Study on the Relationship between Water Use Efficiency and NDVI in Three-North Shelter Forest Region of China; Lanzhou University: Lanzhou, China, 2017. [Google Scholar]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; SueWing, I.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Zha, T.S.; Barr, A.G.; van der Kamp, G.; Black, T.A.; McCaughey, J.H.; Flanagan, L.B. Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agric. For. Meteorol. 2010, 150, 1476–1484. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.B.; Li, X.; Ying, G.; Fu, N. The variability of vegetation growing season in the northern China based on noaa ndvi and msavi from 1982 to 1999. Acta Ecol. Sin. 2007, 27, 504–515. [Google Scholar]
- Luo, Z.H.; Yu, S.X. Spatiotemporal variability of land surface phenology in China from 2001–2014. Remote Sens. 2017, 9, 65. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.; Huang, F.; Zhai, H. Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data. Sensors 2019, 19, 1481. https://doi.org/10.3390/s19061481
Qi H, Huang F, Zhai H. Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data. Sensors. 2019; 19(6):1481. https://doi.org/10.3390/s19061481
Chicago/Turabian StyleQi, Hang, Fang Huang, and Huan Zhai. 2019. "Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data" Sensors 19, no. 6: 1481. https://doi.org/10.3390/s19061481
APA StyleQi, H., Huang, F., & Zhai, H. (2019). Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data. Sensors, 19(6), 1481. https://doi.org/10.3390/s19061481