Estimating the Composition of Food Nutrients from Hyperspectral Signals Based on Deep Neural Networks
Abstract
:1. Introduction
2. The Proposed System
2.1. Acquisition of Food Hyperspectral Signals
2.2. System Design
2.3. Learning Architecture
2.4. Error Avoidance
3. Performance Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Health Observatory Data Repository. 2017. Available online: http://apps.who.int/gho/data/view.main.GLOBAL2461A?lang=en (accessed on 30 March 2019).
- World Health Organization. Diabetes. 2017. Available online: http://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 30 March 2019).
- Rahati, S.; Shahraki, M.; Arjomand, G.; Shahraki, T. Food pattern, lifestyle and diabetes mellitus. Int. J. High Risk Behav. Addict. 2014, 3, e8725. [Google Scholar] [CrossRef] [PubMed]
- SCIO. Consumerphysics Inc. Available online: https://www.consumerphysics.com (accessed on 30 March 2019).
- Ege, T.; Yanai, K. Image-based food calorie estimation using knowledge on food categories, ingredients and cooking directions. In Proceedings of the Thematic Workshops of ACM Multimedia 2017, Mountain View, CA, USA, 23–27 October 2017; pp. 367–375. [Google Scholar]
- Solanas, A.; Patsakis, C.; Conti, M.; Vlanchos, I.S.; Ramos, V.; Falcone, F. Smart health: A context-aware health paradigm within smart cities. IEEE Commun. Mag. 2014, 52, 74–81. [Google Scholar] [CrossRef]
- Reuhs, B.L. High-Performance Liquid Chromatography. In Food Science Text Series; Nielsen, S., Ed.; Springer: Cham, Switzerland, 2017; pp. 213–226. [Google Scholar]
- Pomeranz, Y.; Meloan, C.E. Centrifugation. In Food Analysis: Theory and Practice; Pomeranz, Y., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; pp. 409–418. [Google Scholar]
- Wang, J.; Chen, X.; Fang, D.; Xiong, J.; Jiang, H.; Balan, R.K. Material Identification and Target Imaging with RFID [IoT Connection]. Computer 2018, 51, 64–68. [Google Scholar] [CrossRef]
- Liang, Y.; Li, J. Computer vision-based food calorie estimation: Dataset, method, and experiment. arXiv, 2017; arXiv:1705.07632. [Google Scholar]
- Chokr, M.; Elbassuoni, S. Calories Prediction from Food Image. In Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications, San Francisco, CA, USA, 6–9 February 2017; pp. 4664–4669. [Google Scholar]
- Ege, T.; Yanai, K. Simultaneous Estimation of Food Categories and Calories with Multi-task CNN. In Proceedings of the Fifteenth IAPR Interantional Conference on Machien Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017. [Google Scholar]
- Xu, J.L.; Riccioli, C.; Sun, D.W. Development of an alternative technique for rapid and accurate determination of fish caloric density based on hyperspectral imanging. J. Food Eng. 2016, 190, 185–194. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fowler, M.S.; Fisk, I.D. Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa bean. J. Food Chem. 2018, 258, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Parekh, H.S.; Thakore, D.G.; Jaliya, U.K. A survey on object detection and tracking methods. Int. J. Innov. Res. Comput. Commun. Eng. 2014, 3, 2970–2978. [Google Scholar]
- Zhang, D.; Xu, L.; Liang, D.; Xu, C.; Jin, X.; Weng, S. Fast Prediction of Sugar Content in Dangshan Pear (Pyrus spp.) Using Hyperspectral Imagery Data. Food Anal. Methods 2018, 11, 2336–2345. [Google Scholar] [CrossRef]
- Tang, C.; He, H.; Li, E.; Li, E. Multispectral imaging for predicting sugar content of ’Fuji’ apples. Opt. Laser Technol. 2018, 106, 280–285. [Google Scholar] [CrossRef]
- Kahmann, A.; Anzanello, M.J.; Marcelo, M.C.A.; Pozebon, D. Near infrared spectroscopy and element concentration analysis for assessing yerba mate (llex paraguariensis) samples according to the country of origin. Comput. Electron. Agric. 2017, 140, 348–360. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Grebby, S.; Fisk, I.D. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res. Int. 2018, 106, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldi, P. Autoencoders, Unsupervised Learning, and Deep Architectures. In Proceedings of the International Conference on Machine Learning (ICML-12), Edinburgh, UK, 26 June–1 July 2012; pp. 37–49. [Google Scholar]
- Lu, R.; Guyer, D.E.; Beaudry, R.M. Determination of firmness and sugar content of apples using near-infrared diffuse reflectance. J. Testure Stud. 2000, 31, 615–630. [Google Scholar] [CrossRef]
- Gangneung Science Industry Promotion Agency (GSIPA). Available online: http://www.gsif.or.kr/main.do (accessed on 10 July 2018).
- Rahmani, H.; Mian, A.; Shah, M. Learning a deep model for human action recognition from novel viewpoints. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 667–681. [Google Scholar] [CrossRef]
- Wang, Z.; Hamza, W.; Florian, R. Bilateral multi-perspective matching for natural language sentences. arXiv, 2017; arXiv:1702.03814. [Google Scholar]
- Zhang, Y.; Chan, W.; Jaitly, N. Very deep convolutional networks for end-to-end speech recognition. In Proceedings of the International Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 4845–4849. [Google Scholar]
- Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodel Deep Learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 689–696. [Google Scholar]
- Wang, J.; He, H.; Prokhorov, D.V. A Folded Neural Network Autoencoder for Dimensionality Reduction. In Proceedings of the International Neural Network Society Winter Conference (INNS-WC 2012), Bangkok, Thailand, 3–5 October 2012; pp. 120–127. [Google Scholar]
- Zhang, G.P. Neural networks for classification: A survey. IEEE Trans. Syst. Man Cyvern. 2000, 30, 451–462. [Google Scholar] [CrossRef]
- Zou, W.; Li, Y.; Tang, A. Effects of the number of hidden nodes used in a structured-based neural network on the reliability of image classification. Neural Comput. Appl. 2009, 18, 249–260. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 1956, 42, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Int. Jt. Conf. Artif. Intell. (IJCAI) 1995, 14, 1137–1145. [Google Scholar]
- Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
Category | Num. Foods | Examples |
---|---|---|
Drink (juice) | 37 | Apple, tomato, orange, blueberry, lemon, grape, strawberry, sprite, coke, coffee, milk, ... |
Sauce (spread) | 10 | Mustard, ketchup, mayonnaise, ... |
Snack/candy/chocolate | 19 | Nacho, butter cookie, jelly, ... |
Meat | 8 | Sausage, bacon, pork, ... |
Miscellaneous | 106 | Grain (rice and bread), cheese, noodle, ... |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, D.; Choi, J.-Y.; Kim, H.-C.; Cho, J.-S.; Moon, K.-D.; Park, T. Estimating the Composition of Food Nutrients from Hyperspectral Signals Based on Deep Neural Networks. Sensors 2019, 19, 1560. https://doi.org/10.3390/s19071560
Ahn D, Choi J-Y, Kim H-C, Cho J-S, Moon K-D, Park T. Estimating the Composition of Food Nutrients from Hyperspectral Signals Based on Deep Neural Networks. Sensors. 2019; 19(7):1560. https://doi.org/10.3390/s19071560
Chicago/Turabian StyleAhn, DaeHan, Ji-Young Choi, Hee-Chul Kim, Jeong-Seok Cho, Kwang-Deog Moon, and Taejoon Park. 2019. "Estimating the Composition of Food Nutrients from Hyperspectral Signals Based on Deep Neural Networks" Sensors 19, no. 7: 1560. https://doi.org/10.3390/s19071560
APA StyleAhn, D., Choi, J.-Y., Kim, H.-C., Cho, J.-S., Moon, K.-D., & Park, T. (2019). Estimating the Composition of Food Nutrients from Hyperspectral Signals Based on Deep Neural Networks. Sensors, 19(7), 1560. https://doi.org/10.3390/s19071560