A Multisensor Data Fusion Method Based on Gaussian Process Model for Precision Measurement of Complex Surfaces
Abstract
1. Introduction
2. The Multisensor Data Fusion Method
2.1. Summary of the Multisensor Fusion Method
- one type of dataset with high accuracy, low density, which is generated by CMM or high-precision microscope. This high-accuracy dataset is called the HA set for short.
- another type of dataset with low accuracy, high density, generated by the structured light scanner, line scanner, or similar technology. This low-accuracy dataset is referred to as the LA set.
2.2. ADF-Based Robust Data Registration
2.3. GP-Based Data Fusion Method
3. Experimental Verification
3.1. Simulation Verification
3.2. Verification in Actual Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, X.J.; Whitehouse, D.J. Technological shifts in surface metrology. CIRP Ann. 2012, 61, 815–836. [Google Scholar] [CrossRef]
- Fang, F.Z.; Zhang, X.D.; Weckenmann, A.; Zhang, G.X.; Evans, C. Manufacturing and measurement of freeform optics. CIRP Ann. 2013, 62, 823–846. [Google Scholar] [CrossRef]
- Wang, J.; Leach, R.K.; Jiang, X. Review of the mathematical foundations of data fusion techniques in surface metrology. Surf. Topogr. Metrol. Prop. 2015, 3, 023001. [Google Scholar] [CrossRef]
- Weckenmann, A.; Jiang, X.; Sommer, K.D.; Neuschaefer-Rube, U.; Seewig, J.; Shaw, L.; Estler, T. Multisensor data fusion in dimensional metrology. CIRP Ann. 2009, 58, 701–721. [Google Scholar] [CrossRef]
- Rak, M.B.; Wozniak, A.; Mayer, J.R.R. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud. Opt. Lasers Eng. 2016, 81, 140–150. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Yuan, H. An Efficient Pose Measurement Method of a Space Non-Cooperative Target Based on Stereo Vision. IEEE Access 2017, 5, 22344–22362. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Liang, B.; Wu, A. Virtual Stereovision Pose Measurement of Noncooperative Space Targets for a Dual-Arm Space Robot. IEEE Trans. Instrum. Meas. 2020, 69, 76–88. [Google Scholar] [CrossRef]
- Sładek, J.; Błaszczyk, P.M.; Kupiec, M.; Sitnik, R. The hybrid contact–optical coordinate measuring system. Measurement 2011, 44, 503–510. [Google Scholar] [CrossRef]
- Rak, M.B.; Mayer, R.; Wozniak, A. Proximity weighted correction of high density high uncertainty (HDHU) point cloud using low density low uncertainty (LDLU) reference point coordinates. Opt. Lasers Eng. 2015, 68, 160–165. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Liang, B.; Wu, A. Pose Measurement and Motion Estimation of Space Non-Cooperative Targets Based on Laser Radar and Stereo-Vision Fusion. IEEE Sens. J. 2019, 19, 3008–3019. [Google Scholar] [CrossRef]
- Qian, Z.; Seepersad, C.C.; Joseph, V.R.; Allen, J.K.; Wu, C.F.J. Building Surrogate Models Based on Detailed and Approximate Simulations. J. Mech. Des. 2006, 128, 668. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Ye, X.; Wang, Z.; Fu, L.; Liu, C.; Wang, Z. Multi-Sensor Registration in High-Precision CMM Based on a Composite Standard. Sensors 2018, 18, 1220. [Google Scholar] [CrossRef] [PubMed]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Pottmann, H.; Huang, Q.X.; Yang, Y.L.; Hu, S.M. Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 2006, 67, 277–296. [Google Scholar] [CrossRef]
- Pottmann, H.; Leopoldseder, S.; Hofer, M. Registration without ICP. Comput. Vis. Image Underst. 2004, 95, 54–71. [Google Scholar] [CrossRef]
- Wang, W.P.; Pottmann, H.; Liu, Y. Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Graph. 2006, 25, 214–238. [Google Scholar] [CrossRef]
- Li, W.L.; Yin, Z.P.; Huang, Y.A.; Xiong, Y.L. Three-dimensional point-based shape registration algorithm based on adaptive distance function. IET Comput. Vis. 2011, 5, 68. [Google Scholar] [CrossRef]
- Li, W.L.; Yin, Z.P.; Xiong, Y.L. Adaptive Distance Function and its Application in Free-form Surface Localization. In Proceedings of the Icia: 2009 International Conference on Information and Automation, Zhuhai, Macau, China, 22–24 June 2009; Volume 1–3, pp. 19–23. [Google Scholar]
- Jamshidi, J.; Owen, G.W.; Mileham, A.R. A New Data Fusion Method for Scanned Models. J. Comput. Inf. Sci. Eng. 2006, 6, 340. [Google Scholar] [CrossRef]
- Qian, P.Z.G.; Wu, C.F.J. Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments. Technometrics 2008, 50, 192–204. [Google Scholar] [CrossRef]
- Xia, H.; Ding, Y.; Mallick, B.K. Bayesian hierarchical model for combining misaligned two-resolution metrology data. IIE Trans. 2011, 43, 242–258. [Google Scholar] [CrossRef]
- Kong, L.B.; Ren, M.J.; Xu, M. Development of Data Registration and Fusion Methods for Measurement of Ultra-Precision Freeform Surfaces. Sensors 2017, 17, 1110. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, Z.; Zeng, D.; Peng, T. Three-Dimensional Measurement Method of Four-View Stereo Vision Based on Gaussian Process Regression. Sensors 2019, 19, 4486. [Google Scholar] [CrossRef] [PubMed]
- Senin, N.; Colosimo, B.M.; Pacella, M. Point set augmentation through fitting for enhanced ICP registration of point clouds in multisensor coordinate metrology. Robot. Comput. Integr. Manuf. 2013, 29, 39–52. [Google Scholar] [CrossRef]
- Ren, M.J.; Sun, L.J.; Liu, M.Y.; Cheung, C.F.; Yin, Y.H.; Cao, Y.L. A weighted least square based data fusion method for precision measurement of freeform surfaces. Precis. Eng. 2017, 48, 144–151. [Google Scholar] [CrossRef]
- Xia, H.; Ding, Y.; Wang, J. Gaussian process method for form error assessment using coordinate measurements. IIE Trans. 2008, 40, 931–946. [Google Scholar] [CrossRef]
- Colosimo, B.M.; Pacella, M.; Senin, N. Multisensor data fusion via Gaussian process models for dimensional and geometric verification. Precis. Eng. 2015, 40, 199–213. [Google Scholar] [CrossRef]
- del Castillo, E.; Colosimo, B.M.; Tajbakhsh, S.D. Geodesic Gaussian Processes for the Parametric Reconstruction of a Free-Form Surface. Technometrics 2015, 57, 87–99. [Google Scholar] [CrossRef]
- Colosimo, B.M.; Cicorella, P.; Pacella, M.; Blaco, M. From Profile to Surface Monitoring: SPC for Cylindrical Surfaces Via Gaussian Processes. J. Qual. Technol. 2014, 46, 95–113. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Q.; Sun, P. A robust registration algorithm of point clouds based on adaptive distance function for surface inspection. Meas. Sci. Technol. 2019, 30, 075003. [Google Scholar] [CrossRef]
Method | Error of Transformation Parameters | Computation Time (s) | |||||
---|---|---|---|---|---|---|---|
tx (μm) | ty (μm) | tz (μm) | rx (mrad) | ry (mrad) | rz (mrad) | ||
IRLS-ADF | 1.8 | 3.7 | 2.5 | 0.5 | 0.2 | 0.7 | 1.1 |
ICP | 3.7 | 5.3 | 5.2 | 1.4 | 5.0 | 2.1 | 3.2 |
Dataset 1 | Dataset 2 | Fusion by IRLS-ADF+GP | Fusion by ICP+WM | |
---|---|---|---|---|
RMS (μm) | 4.3 | 14.9 | 1.9 | 3.4 |
PV (μm) | 19.9 | 57.4 | 13.8 | 17 |
Computation time (s) | - | - | 5.5 | 8.2 |
Dataset | CMM | SL | Fusion | Reference |
---|---|---|---|---|
RMS (μm) | 13.2 | 17.6 | 14.1 | 13.9 |
PV (μm) | 60.4 | 77.4 | 66.5 | 65.4 |
Time (h) | ~0.4 | <0.1 | ~0.4 | >2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Liu, Q.; Bai, M.; Sun, P. A Multisensor Data Fusion Method Based on Gaussian Process Model for Precision Measurement of Complex Surfaces. Sensors 2020, 20, 278. https://doi.org/10.3390/s20010278
Ding J, Liu Q, Bai M, Sun P. A Multisensor Data Fusion Method Based on Gaussian Process Model for Precision Measurement of Complex Surfaces. Sensors. 2020; 20(1):278. https://doi.org/10.3390/s20010278
Chicago/Turabian StyleDing, Ji, Qiang Liu, Mingxuan Bai, and Pengpeng Sun. 2020. "A Multisensor Data Fusion Method Based on Gaussian Process Model for Precision Measurement of Complex Surfaces" Sensors 20, no. 1: 278. https://doi.org/10.3390/s20010278
APA StyleDing, J., Liu, Q., Bai, M., & Sun, P. (2020). A Multisensor Data Fusion Method Based on Gaussian Process Model for Precision Measurement of Complex Surfaces. Sensors, 20(1), 278. https://doi.org/10.3390/s20010278