Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water—A Review
Abstract
:1. Introduction
2. Graphene-Based Nanocomposites
2.1. Metals
2.2. Polymer
2.3. Metal Compounds
2.4. Others
3. GO-Based Nanocomposites
3.1. Metals
3.2. Others
4. RGO-Based Nanocomposites
4.1. Metal
4.2. Metal oxide
4.3. Polymer
4.4. Other Metal Compounds
4.5. Others
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Ran, W. Comprehensive eutrophication assessment based on fuzzy matter element model and monte Carlo-Triangular fuzzy numbers approach. Int. J. Environ. Res. Public Health 2019, 16, 1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Wang, Z.; Wang, X.; Xu, J.; Jia, J. Study on Mechanism Experiments and Evaluation Methods for Water Eutrophication. J. Chem. 2017, 2017, 7. [Google Scholar] [CrossRef]
- Fu, H.; Tu, S.; Huang, G.; Xie, Q.; Chen, T.; Gao, P. Research on distribution characteristics of inorganic nitrogen in Yundang Lake: For prevention and control of the red tide. J. Nat. Dis. 2015, 24, 243–249. [Google Scholar]
- Lucchetti, R.; Onotri, L.; Clarizia, L.; Di Natale, F.; Di Somma, I.; Andreozzi, R.; Marotta, R. Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over “in situ” prepared zero-valent nano copper/P25. Appl. Catal. B Environ. 2017, 202, 539–549. [Google Scholar] [CrossRef]
- Yue, R.; Lu, Q.; Zhou, Y. A novel nitrite biosensor based on single-layer graphene nanoplatelet-protein composite film. Biosens. Bioelectron. 2011, 26, 4436–4441. [Google Scholar] [CrossRef]
- Guadagnini, L.; Tonelli, D. Carbon electrodes unmodified and decorated with silver nanoparticles for the determination of nitrite, nitrate and iodate. Sens. Actuators B Chem. 2013, 188, 806–814. [Google Scholar] [CrossRef]
- Daniel, W.L.; Han, M.S.; Lee, J.; Mirkin, C.A. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc. 2009, 131, 6362. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere 2005, 58, 1255–1267. [Google Scholar] [CrossRef]
- Lee, Y.S. Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea. Mar. Pollut. Bull. 2006, 52, 1249–1259. [Google Scholar] [CrossRef]
- Moorcroft, M.J.; Davis, J.; Compton, R.G. Detection and determination of nitrate and nitrite: A review. Talanta 2001, 54, 785–803. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, L.; Liu, Y.; Lin, L.; Lu, R.; Zhu, J.; He, L.; Lu, Z. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, Y.; Li, S.; Zheng, Z. Determination of nitrite in drinking water by vortex-assisted dispersive liquid-liquid microextraction combined with spectrophotometry. J. Food Saf. Qual. 2019, 10, 4498–4502. [Google Scholar]
- Valiente, N.; Gomez-Alday, J.J.; Jirsa, F. Spectrophotometric determination of nitrate in hypersaline waters after optimization based on the Box-Behnken design. Microchem. J. 2019, 145, 951–958. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Pan, Z.; Li, D. A High-Performance optoelectronic sensor device for nitrate nitrogen in recirculating aquaculture systems. Sensors 2018, 18, 3382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, Q. Selective determination of nitrite/nitrate based on photo-induced redox activity of titanium dioxide. J. Sep. Sci. 2018, 41, 4075–4082. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Rahimpour, E. Utilizing of Ag@AgCl@graphene oxide@Fe3O4 nanocomposite as a magnetic plasmonic nanophotocatalyst in light-initiated H2O2 generation and chemiluminescence detection of nitrite. Talanta 2015, 144, 769–777. [Google Scholar] [CrossRef]
- Antczak-Chrobot, A.; Bak, P.; Wojtczak, M. The use of ionic chromatography in determining the contamination of sugar by-products by nitrite and nitrate. Food Chem. 2018, 240, 648–654. [Google Scholar] [CrossRef]
- Duong, H.D.; Kim, H.L.; Il Rhee, J. Development of colorimetric and ratiometric fluorescence membranes for detection of nitrate in the presence of Aluminum-Containing compounds. Sensors 2018, 18, 2883. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Li, Z.; Zhang, X.; Shi, Y.; Zhou, N. Nitrogen-Doped carbon quantum dots as fluorescent probes for sensitive and selective detection of nitrite. Molecules 2017, 22, 2061. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Jiang, H.; Mahal, N.K.; Weber, R.J.; Kumar, R.; Castellano, M.J.; Dong, L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B Chem. 2017, 239, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Yu, B.; Han, D.X.; Bing, Z. Research Progress on Nitrite Electrochemical Sensor. Chin. J. Anal. Chem. 2018, 46, 147–155. [Google Scholar]
- Zhao, Y.; Zhao, D.; Li, D. Electrochemical and other methods for detection and determination of dissolved nitrite: A review. Int. J. Electrochem. Sci. 2015, 10, 1144–1168. [Google Scholar]
- Ping, J.; Wu, J.; Wang, Y.; Ying, Y. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 2012, 34, 70–76. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, H.; Ping, J. Simultaneous determination of Cd (II) and Pb (II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chem. 2019, 274, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, Q.; Liu, J.; Li, G.; Liang, J.; Deng, P. Recent progress in electrochemical detection of nitrite in foodstuffs using Graphene-Based composite materials. Food Sci. 2018, 39, 337–345. [Google Scholar]
- Li, X.; Ping, J.; Ying, Y. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trac-Trends Anal. Chem. 2019, 113, 1–12. [Google Scholar] [CrossRef]
- Aflatouni, F.; Soleimani, M. Preparation of a new polymerized ionic Liquid-Modified magnetic nano adsorbent for the extraction and preconcentration of nitrate and nitrite anions from environmental water samples. Chromatographia 2018, 81, 1475–1486. [Google Scholar] [CrossRef]
- Guangjun, H.; Jinlei, Z.; Dandan, Z. Cobalt monoxide nanoparticles modified glassy carbon electrodes as a sensor for determination of nitrite. Adv. Mater. Res. 2015, 1120–1121, 291–298. [Google Scholar]
- Jiang, Y.N.; Luo, H.Q.; Li, N.B. Determination of nitrite with a nano-gold modified glassy carbon electrode by cyclic voltammetry. Int. J. Environ. Anal. Chem. 2007, 87, 295–306. [Google Scholar] [CrossRef]
- He, Q.; Gan, T.; Zheng, D.; Hu, S. Direct electrochemistry and electrocatalysis of nitrite based on nano-alumina-modified electrode. J. Solid State Electrochem. 2010, 14, 1057–1064. [Google Scholar] [CrossRef]
- Han, J.; Wang, L.; Wu, Z.; Huang, K.; Wang, M. Determination of nitrite by layer-by-layer self-assembly nano-gold/ thionine modified glassy carbon electrode. Metall. Anal. 2012, 32, 17–21. [Google Scholar]
- Gupta, S.; Prakash, R. Photochemical assisted formation of silver nano dendrites and their application in amperometric sensing of nitrite. RSC Adv. 2014, 4, 7521–7527. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, X.; Huang, Y.; Yu, Z.; Shao, Y.; Zi, Y. Study of Chitosan-TiO2 nanoparticles composite film modified electrode for the electrochemical oxidation behaviour of nitrite. Asian J. Chem. 2011, 23, 2053–2056. [Google Scholar]
- Zhang, Y.; Chen, P.; Wen, F.; Huang, C.; Wang, H. Construction of polyaniline/molybdenum sulfide nanocomposite: Characterization and its electrocatalytic performance on nitrite. Ionics 2016, 22, 1095–1102. [Google Scholar] [CrossRef]
- Wang, G.; Han, R.; Feng, X.; Li, Y.; Lin, J.; Luo, X. A glassy carbon electrode modified with poly (3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim. Acta 2017, 184, 1721–1727. [Google Scholar] [CrossRef]
- Thirumalraj, B.; Palanisamy, S.; Chen, S.; Zhao, D. Amperometric detection of nitrite in water samples by use of electrodes consisting of palladium-nanoparticle-functionalized multi-walled carbon nanotubes. J. Colloid Interface Sci. 2016, 478, 413–420. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, X.; Liu, X.; Wei, W.; Luo, S.; Liu, Y.; Liu, Y. Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. J. Electroanal. Chem. 2010, 639, 181–186. [Google Scholar] [CrossRef]
- Bartolome, J.P.; Fragoso, A. Electrochemical detection of nitrite and ascorbic acid at glassy carbon electrodes modified with carbon nano-onions bearing electroactive moieties. Inorgan. Chim. Acta 2017, 468, 223–231. [Google Scholar] [CrossRef]
- Ping, J.; Zhou, Y.; Wu, Y.; Papper, V.; Boujday, S.; Marks, R.S.; Steele, T.W.J. Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens. Bioelectron. 2015, 64, 373–385. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 2017, 184, 1–44. [Google Scholar] [CrossRef]
- Li, G.; Xia, Y.; Tian, Y.; Wu, Y.; Liu, J.; He, Q.; Chen, D. Review-Recent Developments on Graphene-Based Electrochemical Sensors toward Nitrite. J. Electrochem. Soc. 2019, 166, B881–B895. [Google Scholar] [CrossRef]
- Yao, Y.; Ping, J. Recent advances in graphene-based freestanding paper-like materials for sensing applications. Trac-Trends Anal. Chem. 2018, 105, 75–88. [Google Scholar] [CrossRef]
- Mani, V.; Wu, T.; Chen, S. Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite. J. Solid State Electrochem. 2014, 18, 1015–1023. [Google Scholar] [CrossRef]
- Majidi, M.R.; Ghaderi, S. Hydrogen bubble bubble dynamic template fabrication of nanoporous Cu film supported by graphene nanaosheets: A highly sensitive sensor for detection of nitrite. Talanta 2017, 175, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kim, J.; Cui, T. Self-assembled graphene and copper nanoparticles composite sensor for nitrate determination. Microsyst. Technol. 2018, 24, 3623–3630. [Google Scholar] [CrossRef]
- Wang, Q.; Yun, Y. A nanomaterial composed of cobalt nanoparticles, poly (3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim. Acta 2012, 177, 411–418. [Google Scholar] [CrossRef]
- Hameed, R.M.A.; Medany, S.S. Sensitive nitrite detection at core-shell structured Cu@Pt nanoparticles supported on graphene. Appl. Surf. Sci. 2018, 458, 252–263. [Google Scholar] [CrossRef]
- Hameed, R.M.A.; Medany, S.S. Construction of core-shell structured nickel@platinum nanoparticles on graphene sheets for electrochemical determination of nitrite in drinking water samples. Microchem. J. 2019, 145, 354–366. [Google Scholar] [CrossRef]
- Hameed, R.M.A.; Medany, S.S. Evaluation of core-shell structured cobalt@platinum nanoparticles-decorated graphene for nitrite sensing. Synth. Met. 2019, 247, 67–80. [Google Scholar] [CrossRef]
- Li, S.; Zhao, G.; Zhang, R.; Hou, Y.; Liu, L.; Pang, H. A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim. Acta 2013, 180, 821–827. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Zhou, F.; Yang, G.; Qu, L.; Miao, X. Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem. Commun. 2017, 81, 74–78. [Google Scholar] [CrossRef]
- He, B.; Yan, D. One-pot preparation of wavy graphene/Au composites and their application for highly sensitive detection of nitrite. Anal. Methods 2018, 10, 3654–3659. [Google Scholar] [CrossRef]
- Li, S.; Lv, M.; Meng, J.; Zhao, L. A 3D composite of gold nanoparticle-decorated MnO2-graphene-carbon nanotubes as a novel sensing platform for the determination of nitrite. Ionics 2018, 24, 3177–3186. [Google Scholar] [CrossRef]
- Ye, D.; Luo, L.; Ding, Y.; Chen, Q.; Liu, X. A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 2011, 136, 4563–4569. [Google Scholar] [CrossRef]
- Xiao, Q.; Feng, M.; Liu, Y.; Lu, S.; He, Y.; Huang, S. The graphene/polypyrrole/chitosan-modified glassy carbon electrode for electrochemical nitrite detection. Ionics 2018, 24, 845–859. [Google Scholar] [CrossRef]
- Nie, T.; Zhang, O.; Lu, L.; Xu, J.; Wen, Y.; Qiu, X. Facile synthesis of poly (3,4-ethylenedioxythiophene)/Graphene nanocomposite and its application for determination of nitrite. Int. J. Electrochem. Sci. 2013, 8, 8708–8718. [Google Scholar]
- Tian, F.; Li, H.; Li, M.; Li, C.; Lei, Y.; Yang, B. Synthesis of one-dimensional poly (3,4-ethylenedioxythiophene)-graphene composites for the simultaneous detection of hydroquinone, catechol, resorcinol, and nitrite. Synth. Met. 2017, 226, 148–156. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.; Gao, J.; Qian, Y.; Song, H.; Wang, S.; Xie, K.; Jiang, W.; Li, A. Enhanced electrocatalytic nitrite determination using poly (diallyldimethylammonium chloride)-coated Fe-1.833 (OH)(0.5)O-2.5-decorated N-doped graphene ternary hierarchical nanocomposite. Sens. Actuators B Chem. 2017, 243, 184–194. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Nag, A.; Mukhopadhyay, S.C.; Burkitt, L. A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A Phys. 2018, 269, 79–90. [Google Scholar] [CrossRef]
- Li, X.; Wei, C.; Song, Y.; Zhu, H.; Chen, S.; Li, P.; Sun, L.; Wang, L. Novel NO2- sensor using PW12O403-/Chitosan-Graphene Nanocomposites/Cysteamine/Gold electrode. Environ. Eng. Sci. 2015, 32, 185–192. [Google Scholar] [CrossRef]
- Kung, C.; Li, Y.; Lee, M.; Wang, S.; Chiang, W.; Ho, K. In situ growth of porphyrinic metal-organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J. Mater. Chem. A 2016, 4, 10673–10682. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, Q.; Yang, J.; Li, X.; He, P. Electrochemical response and determination of nitrite on a CuS-Nitrogen doped graphene modified electrode. J. Anal. Sci. 2018, 34, 171–175. [Google Scholar]
- Oznuluer, T.; Ozdurak, B.; Dogan, H.O. Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media. J. Electroanal. Chem. 2013, 699, 1–5. [Google Scholar] [CrossRef]
- Ma, X.; Li, M.; Liu, X.; Wang, L.; Chen, N.; Li, J.; Feng, C. A graphene oxide nanosheet-modified Ti nanocomposite electrode with enhanced electrochemical property and stability for nitrate reduction. Chem. Eng. J. 2018, 348, 171–179. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, H.; Wang, K.; Zuo, Z. All-solid-state Nitrate-selective Electrodes Based on Graphene Aerogels. Trans. Chin. Soc. Agric. Mach. 2017, 48, 188–192. [Google Scholar]
- Palanisamy, S.; Thirumalraj, B.; Chen, S. A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/beta-cyclodextrin composite. J. Electroanal. Chem. 2016, 760, 97–104. [Google Scholar] [CrossRef]
- Ozturk, A.; Alanyalioglu, M. Electrochemical fabrication and amperometric sensor application of graphene sheets. Superlattices Microstruct. 2016, 95, 56–64. [Google Scholar] [CrossRef]
- Mehmeti, E.; Stankovic, D.M.; Hajrizi, A.; Kalcher, K. The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination. Talanta 2016, 159, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, Y.; Zhou, J.; Wang, L. Construction of a highly sensitive non-enzymatic nitrite sensor using electrochemically reduced holey graphene. Anal. Chim. Acta 2018, 1043, 28–34. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Zhang, J.; Zhou, J. Electrochemical sensing platform based on Three-Dimensional holey graphene for highly selective and Ultra-Sensitive detection of ascorbic acid, uric acid, and nitrite. J. Electrochem. Soc. 2019, 166, B787–B792. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Wang, K.; Mao, H.; You, T. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 2017, 252, 17–23. [Google Scholar] [CrossRef]
- Lawal, A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019, 141, 111384. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Sheng, Q.; Zheng, J. Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing. Analyst 2016, 141, 4349–4358. [Google Scholar] [CrossRef] [PubMed]
- Ikhsan, N.I.; Rameshkumar, P.; Pandikumar, A.; Shahid, M.M.; Huang, N.M.; Kumar, S.V.; Lim, H.N. Facile synthesis of graphene oxide-silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta 2015, 144, 908–914. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.; Jing, M.; Zhang, Y.; Wang, W.; Liu, L.; Xu, Z.; Liu, L.; Li, F.; Wu, N. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim. Acta 2019, 295, 434–443. [Google Scholar] [CrossRef]
- Li, B.; Nie, F.; Sheng, Q.; Zheng, J. An electrochemical sensor for sensitive determination of nitrites based on Ag-Fe3O4-graphene oxide magnetic nanocomposites. Chem. Pap. 2015, 69, 911–920. [Google Scholar] [CrossRef]
- Ma, C.; Qian, Y.; Zhang, S.; Song, H.; Gao, J.; Wang, S.; Liu, M.; Xie, K.; Zhang, X. Temperature-controlled ethanolamine and Ag-nanoparticle dualfunctionalization of graphene oxide for enhanced electrochemical nitrite determination. Sens. Actuators B Chem. 2018, 274, 441–450. [Google Scholar] [CrossRef]
- Shadfar, M.; Tehrani, R.M.; Hooshyar, F. Measurement of nitrate concentration in aqueous media using an electrochemical nanosensor based on silver nanoparticles-nanocellulose/graphene oxide. J. Water Wastewater. 2017, 28, e1–e11. [Google Scholar]
- Rao, D.; Sheng, Q.; Zheng, J. Self-assembly preparation of gold nanoparticle decorated 1-pyrenemethylamine functionalized graphene oxide-carbon nanotube composites for highly sensitive detection of nitrite. Anal. Methods 2016, 8, 4926–4933. [Google Scholar] [CrossRef]
- Mo, R.; Wang, X.; Yuan, Q.; Yan, X.; Su, T.; Feng, Y.; Lv, L.; Zhou, C.; Hong, P.; Sun, S.; et al. Electrochemical determination of nitrite by au Nanoparticle/Graphene-Chitosan modified electrode. Sensors 2018, 18, 1986. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Sheng, Q.; Zheng, J. Synthesis of Au nanoparticles dispersed on halloysite nanotubes-reduced graphene oxide nanosheets and their application for electrochemical sensing of nitrites. New J. Chem. 2016, 40, 9672–9678. [Google Scholar] [CrossRef]
- Sivakumar, M.; Sakthivel, M.; Chen, S.; Pandi, K.; Chen, T.; Yu, M. An electrochemical selective detection of nitrite sensor for polyaniline doped graphene oxide modified electrode. Int. J. Electrochem. Sci. 2017, 12, 4835–4846. [Google Scholar] [CrossRef]
- Muthumariappan, A.; Govindasamy, M.; Chen, S.; Sakthivel, K.; Mani, V. Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Microchim. Acta 2017, 184, 3625–3634. [Google Scholar] [CrossRef]
- Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated Graphene oxide nanocomposite screen-printed electrodes. Electrochim. Acta 2017, 227, 255–266. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Lebogang, S.; Gwala, P.L.; Tsele, T.P.; Olasunkanmi, L.O.; Esther, F.O.; Boikanyo, D.; Mphuthi, N.; Oyekunle, J.A.O.; Ogunfowokan, A.O.; et al. Electrochemical response of nitrite and nitric oxide on graphene oxide nanoparticles doped with Prussian blue (PB) and Fe2O3 nanoparticles. RSC Adv. 2015, 5, 27759–27774. [Google Scholar] [CrossRef]
- Rostami, M.; Abdi, G.; Kazemi, S.H.; Alizadeh, A. Nanocomposite of magnetic nanoparticles/graphene oxide decorated with acetic acid moieties on glassy carbon electrode: A facile method to detect nitrite concentration. J. Electroanal. Chem. 2019, 847, 113239. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Meng, Y.; Chen, Q.; Li, H.; Zhang, Y.; Yao, S. (4-Ferrocenylethyne) phenylamine functionalized graphene oxide modified electrode for sensitive nitrite sensing. Electrochim. Acta 2014, 116, 504–511. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, Y.; Banks, M.K.; Xu, W.; Peng, C.; Wu, R. Polyoxometalate-coupled graphene nanohybrid via gemini surfactants and its electrocatalytic property for nitrite. Appl. Surf. Sci. 2019, 466, 110–118. [Google Scholar] [CrossRef]
- Li, C.; Guo, B.; Guo, X.M.; Wang, F. The electrochemical sensor based on electrochemical oxidation of nitrite on metalloporphyrin-graphene modified glassy carbon electrode. RSC Adv. 2016, 6, 90480–90488. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Wen, F.; Yuan, K.; Tan, J.; Zhang, Z.; Wang, H. Tubular structured bacterial cellulose-based nitrite sensor: Preparation and environmental application. J. Solid State Electrochem. 2017, 21, 3649–3657. [Google Scholar] [CrossRef]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-Based materials for biosensors: A review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowley-Neale, S.J.; Randviir, E.P.; Dena, A.S.A.; Banks, C.E. An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 2018, 10, 218–226. [Google Scholar] [CrossRef]
- Zhang, D.; Fang, Y.; Miao, Z.; Ma, M.; Du, X.; Takahashi, S.; Anzai, J.; Chen, Q. Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochim. Acta 2013, 107, 656–663. [Google Scholar] [CrossRef]
- Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard Mater. 2017, 324, 762–772. [Google Scholar] [CrossRef]
- Couto, A.B.; Oishi, S.S.; Sardinha, A.F.; Ferreira, N.G. Electrocatalytic performance of three dimensional electrode Cu/reduced graphene oxide/carbon fiber for nitrate reduction. ECS Trans. 2017, 80, 1081–1087. [Google Scholar] [CrossRef]
- Jiao, S.; Jin, J.; Wang, L. One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sens. Actuators B Chem. 2015, 208, 36–42. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhai, J.; Dong, S. Temperature-dependent synthesis of CoPt hollow nanoparticles: From ˝nanochain˝ to ˝nanoring˝. Chem. Commun. 2010, 46, 1500–1502. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hu, Y.; Wang, A.; Weng, X.; Chen, J.; Feng, J. Simple synthesis of worm-like Au-Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens. Actuators B Chem. 2015, 208, 468–474. [Google Scholar] [CrossRef]
- Rajkumar, C.; Thirumalraj, B.; Chen, S.; Palanisamy, S. Novel electrochemical preparation of gold nanoparticles decorated on a reduced graphene oxide-fullerene composite for the highly sensitive electrochemical detection of nitrite. RSC Adv. 2016, 6, 68798–68805. [Google Scholar] [CrossRef]
- He, B.; Yan, D. Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control 2019, 103, 70–77. [Google Scholar] [CrossRef]
- Yu, H.; Li, R.; Song, K. Amperometric determination of nitrite by using a nanocomposite prepared from gold nanoparticles, reduced graphene oxide and multi-walled carbon nanotubes. Microchim. Acta 2019, 186, 624. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Mahmoud, T.; Ahn, M.; Yoo, J.; Hahn, Y. Fabrication of sensitive non-enzymatic nitrite sensor using silver-reduced graphene oxide nanocomposite. J. Colloid Interface Sci. 2018, 516, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, J.; Nie, F.; Zheng, J. Facile synthesis of TiO2-functionalized graphene nanosheet-supported Ag catalyst and its electrochemical oxidation of nitrite. J. Iran Chem. Soc. 2015, 12, 1535–1542. [Google Scholar] [CrossRef]
- Kaladevi, G.; Meenakshi, S.; Pandian, K.; Wilson, P. Synthesis of Well-Dispersed silver nanoparticles on Polypyrrole/Reduced graphene oxide nanocomposite for simultaneous detection of toxic hydrazine and nitrite in water sources. J. Electrochem. Soc. 2017, 164, B620–B631. [Google Scholar] [CrossRef]
- Dagci, K.; Alanyalioglu, M. Preparation of Free-Standing and flexible Graphene/Ag Nanoparticles/Poly (pyronin y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl. Mater. Interfaces. 2016, 8, 2713–2722. [Google Scholar] [CrossRef]
- Vijayaraj, K.; Jin, S.; Park, D. A sensitive and selective nitrite detection in water using Graphene/Platinum nanocomposite. Electroanalysis 2017, 29, 345–351. [Google Scholar] [CrossRef]
- Sun, M.; Liu, H.; Liu, Y.; Qu, J.; Li, J. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 2015, 7, 1250–1269. [Google Scholar] [CrossRef]
- Marlinda, A.R.; Pandikumar, A.; Yusoff, N.; Huang, N.M.; Lim, H.N. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim. Acta 2015, 182, 1113–1122. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Krishnamoorthy, K.; Sekar, C.; Wilson, J.; Kim, S.J. A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B Environ. 2014, 148, 22–28. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; He, S.; Zhang, S.; Lv, X.; Song, H.; Han, J.; Chen, D. Protonated carbon nitride induced hierarchically ordered Fe2O3/H-C3N4/rGO architecture with enhanced electrochemical sensing of nitrite. Sens. Actuators B Chem. 2018, 260, 490–498. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, C.; Yang, Y.; Dun, X.; Gao, J.; Jin, X. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite. J. Alloys Compd. 2019, 798, 764–772. [Google Scholar] [CrossRef]
- Yue, X.; Luo, X.; Zhou, Z.; Wu, Y.; Bai, Y. PH-regulated synthesis of CuOx/ERGO nanohybrids with tunable electrocatalytic oxidation activity towards nitrite sensing. New J. Chem. 2019, 43, 4947–4958. [Google Scholar] [CrossRef]
- Haldorai, Y.; Kim, J.Y.; Vilian, A.T.E.; Heo, N.S.; Huh, Y.S.; Han, Y. An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens. Actuators B Chem. 2016, 227, 92–99. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, J.; Wang, W.; Sun, Y.; Li, P.; Hu, J.; Chen, L.; Gong, W. Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection. Appl. Surf. Sci. 2019, 485, 274–282. [Google Scholar] [CrossRef]
- Li, X.; Hou, S.; Xie, C.; Fan, G. Graphene-TiO2 Nanocomposite-Modified Screen-Printed electrode for sensitive nitrite determination in hot spring water. Int. J. Electrochem. Sci. 2018, 13, 315–323. [Google Scholar] [CrossRef]
- Stankovic, D.M.; Mehmeti, E.; Zavasnik, J.; Kalcher, K. Determination of nitrite in tap water: A comparative study between cerium, titanium and selenium dioxide doped reduced graphene oxide modified glassy carbon electrodes. Sens. Actuators B Chem. 2016, 236, 311–317. [Google Scholar] [CrossRef]
- Xu, F.; Deng, M.; Liu, Y.; Ling, X.; Deng, X.; Wang, L. Facile preparation of poly (diallyldimethylammonium chloride) modified reduced graphene oxide for sensitive detection of nitrite. Electrochem. Commun. 2014, 47, 33–36. [Google Scholar] [CrossRef]
- Bai, W.; Sheng, Q.; Zheng, J. Hydrophobic interface controlled electrochemical sensing of nitrite based on one step synthesis of polyhedral oligomeric silsesquioxane/reduced graphene oxide nanocomposite. Talanta 2016, 150, 302–309. [Google Scholar] [CrossRef]
- Kesavan, S.; Kumar, D.R.; Baynosa, M.L.; Shim, J. Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: Determination of nitrite in water samples. Mater. Sci. Eng. C Mater. 2018, 85, 97–106. [Google Scholar] [CrossRef]
- Chelaghmia, M.L.; Nacef, M.; Affoune, A.M.; Pontié, M.; Derabla, T. Facile synthesis of Ni(OH)2 modified disposable pencil graphite electrode and its application for highly sensitive non-enzymatic glucose sensor. Electroanalysis 2018, 30, 1117–1124. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, W.; Yin, C.; Zhuang, Q.; Ni, Y. Nonenzymatic amperometric sensor for nitrite detection based on a nanocomposite consisting of nickel hydroxide and reduced graphene oxide. Electroanalysis 2018, 30, 2916–2924. [Google Scholar] [CrossRef]
- Luo, X.; Pan, J.; Pan, K.; Yu, Y.; Zhong, A.; Wei, S.; Li, J.; Shi, J.; Li, X. An electrochemical sensor for hydrazine and nitrite based on graphene-cobalt hexacyanoferrate nanocomposite: Toward environment and food detection. J. Electroanal. Chem. 2015, 745, 80–87. [Google Scholar] [CrossRef]
- Rabti, A.; Ben Aoun, S.; Raouafi, N. A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Microchim. Acta 2016, 183, 3111–3117. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Velmurugan, M.; Chen, S.; Chen, T.; Ye, Y. A Single-Step electrochemical preparation of cadmium sulfide anchored ERGO/beta-CD modified Screen-Printed carbon electrode for sensitive and selective detection of nitrite. J. Electrochem. Soc. 2019, 166, B690–B696. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Zhao, Z.; Liu, J.; Shi, J.; Li, G.; Li, P.; Zhang, W.; Lian, K.; Zhuiykov, S. Synthesis and electrochemical properties of rGO-MoS2 heterostructures for highly sensitive nitrite detection. Ionics 2018, 24, 577–587. [Google Scholar] [CrossRef]
- Xu, H.; Ma, G.; Wu, M.; Peng, X.; Wang, L.; Xu, F. One-pot preparation of three-dimensional macroporous phosphomolybdic acid-MoS2-reduced graphene oxide hybrid for electrochemical detection of nitrite. Int. J. Electrochem. Sci. 2019, 14, 7258–7269. [Google Scholar] [CrossRef]
- Ma, G.; Yang, M.; Xu, F.; Wang, L. A three dimensional, macroporous hybrid of a polyoxometalate and reduced graphene oxide with enhanced catalytic activity for stable and sensitive nonenzymatic detection of nitrite. Anal. Methods 2017, 9, 5140–5148. [Google Scholar] [CrossRef]
- Mani, V.; Periasamy, A.P.; Chen, S. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem. Commun. 2012, 17, 75–78. [Google Scholar] [CrossRef]
- Tang, W.; Ping, J.; Fan, K.; Wang, Y.; Luo, X.; Ying, Y.; Wu, J.; Zhou, Q. All-solid-state nitrate-selective electrode and its application in drinking water. Electrochim. Acta 2012, 81, 186–190. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Du, X. Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection. Talanta 2016, 155, 329–335. [Google Scholar] [CrossRef]
- Deng, K.; Zhou, J.; Huang, H.; Ling, Y.; Li, C. Electrochemical determination of nitrite using a reduced graphene Oxide-Multiwalled carbon Nanotube-Modified glassy carbon electrode. Anal. Lett. 2016, 49, 2917–2930. [Google Scholar] [CrossRef]
- Aksu, Z.; Alanyalioglu, M. Fabrication of free-standing reduced graphene oxide composite papers doped with different dyes and comparison of their electrochemical performance for electrocatalytical oxidation of nitrite. Electrochim. Acta 2017, 258, 1376–1386. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.; Mincu, M.; van Staden, J.F.; Gugoasa, L.A. Molecular recognition of nitrites and nitrates in water samples using Graphene-Based stochastic microsensors. Anal. Chem. 2018, 90, 9997–10000. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pu, H.; Fu, Z.; Sui, X.; Chang, J.; Chen, J.; Mao, S. Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors. Environ. Sci.-Nano 2018, 5, 1990–1999. [Google Scholar] [CrossRef]
Material | Method | Detection Conditions | Detection Range(µM) | LOD (µM) | Sensitivity (µAµM−1cm−2) | Long-term Stability | Repeatability (RSD) | Reproducibility | Ref |
---|---|---|---|---|---|---|---|---|---|
Gr-MWCNTs/FeNPs | Amperometry | 0.77V pH = 5 | 0.1–1680 | 0.076 | 0.697 | 94.3%/3 W | 3.55% | 2.25% | [43] |
NPCF-GNs/GCE | Amperometry | 0.8 V pH = 9 | 0.1–100 | 0.088 | 3.1 | 100%/1 h | 3.74% | 5.14% | [44] |
Gr/CuNPs | DPV | −0.8V | 10–90 | 7.89 | N/A | N/A | N/A | N/A | [45] |
CoNPs-PEDOT-Gr/GCE | Amperometry | 0.45 V pH = 4.5 | 0.5–240 | 0.15 | N/A | 90%/30 D | 3.1% | 4.4% | [46] |
Cu@Pt/Gr | Chronoamperometry | 0.85 V pH = 4 | 1–1000 1000–15000 | 0.035 | 0.021 0.063 | 86.9%/1 M | 3.2% | 4.1% | [47] |
Ni@Pt/Gr | Amperometry | 0.85 V pH = 4 | 283–1230 10–15000 | 0.49 | 0.192 0.085 | 90.2%/3 W | 3.3% | 3.4% | [48] |
Co@Pt/Gr | Amperometry | 0.85 V pH = 4 | 1–2000 2000–15000 | 0.145 | 0.046 0.098 | 87.1%/1 M | 4.2% | 3.9% | [49] |
AuNPs/SG/GCE | Amperometry | 0.73 V | 10–3960 | 0.2 | 0.454a | 93.5%/1 M | 1.92% | 2.86% | [50] |
Au/Gr/MCE | DPV | 0.74 V pH = 4.75 | 0.3–720 | 0.1 | N/A | N/A | N/A | N/A | [51] |
w-Gr/Au/GCE | DPV | 0.84 V pH = 7.2 | 0.1–1000 1000–5000 | 0.06 | N/A | 95%/7 D | N/A | 4% | [52] |
AuNP/MnO2-Gr-CNT/GCE | Amperometry | 0.8 V pH = 7 | 1–2896 | 0.05 | 0.181 | 94%/1 M | N/A | 4.6% | [53] |
Gr/PPy/CS/GCE | Amperometry | 0.9 V pH = 4 | 0.5–722 | 0.1 | N/A | 85%/1 M | 1.8% | N/A | [54] |
CG/PPy/CS/GCE | DPV | 0.876 pH = 4 | 0.2–1000 | 0.02 | N/A | 97.1%/18 D | 3.4% | 1.2% | [55] |
PEDOT/Gr | Amperometry | 0.78 pH = 6 | 0.3–600 | 0.1 | N/A | 95%/35 D | 3.1% | 3.9% | [56] |
PEDOT-Gr/Ta | DPV | 0.7 V pH = 7 | 20–2000 | 7 | N/A | 100%/2 M | 4.5% | 7.8% | [57] |
Fe1.833(OH)0.5O2.5/ PDDA /NG/GCE | Amperometry | 0.837V pH = 7.4 | 0.1–347 347–1275 | 0.027 | N/A | 99.5%/30 D | 0.65% | 0.87% | [58] |
PW12O403−/CS-Gr/CY-AuE | Amperometry | −0.18 V | 0.18–6740 | 0.02 | N/A | 92.2%/2 M | 3.26% | 4.56% | [60] |
MOF-525/Gr | Amperometry | 0.85 V | 100–2500 | 0.75 | 0.0938 | N/A | N/A | N/A | [61] |
NG-CuS/GCE | Amperometry | 0.89 V pH = 6 | 0.1–14020 | 0.033 | N/A | 94.3%/15 D | 3.2% | 6% | [62] |
Gr/CuE | Amperometry | −1.28 V pH = 12 | 9–940 | 10 | N/A | N/A | N/A | N/A | [63] |
GAs /NO3−-ISE/GCE | CV | N/A | 10–100000 | 101.8 | N/A | NS/21 D | N/A | N/A | [65] |
Gr/CD/SPCE | Amperometry | 0.81 pH = 5 | 0.7–2250 | 0.26 | 0.476 | N/A | 3.2% | 2.1% | [66] |
Gr/GCE | Amperometry | 0.805 V pH = 5 | 1–250 | 0.24 | 0.843 | 80%/15 D | N/A | N/A | [67] |
GNs/GCE | Amperometry | 0.9 V pH = 3 | 05–45 45–105 | 0.22 | 6.3219 | 97.6%/5 D | 1.9% | 3.3% | [68] |
ERHG/GCE | Amperometry | 0.92 V pH = 7.4 | 0.2–10000 | 0.054 | 0.311 | 95%/21 D | 2.23% | 2.34% | [69] |
3D-HG | DPV | 0.816 pH = 4 | 0.05–500 500–10000 | 0.01 | 0.764 0.353 | 96.5%/3 W | 1.85% | 2.1% | [70] |
NGQDs@NCNFs | DPV | 0.82 V pH = 4.5 | 5–300 400–3000 | 3 | N/A | N/A | 3.02% | 4.27% | [71] |
Material. | Method | Detection Conditions | Detection Range(µM) | LOD (µM) | Sensitivity (µAµM−1cm−2) | Long-term Stability | Repeatability (RSD) | Reproducibility (RSD) | Ref |
---|---|---|---|---|---|---|---|---|---|
Cube-like Pt/GO | Amperometry | 1.02 V pH = 4 | 0.5–227780 | 0.2 | 0.358a | N/A | N/A | N/A | [73] |
Aggregation-like Pt/GO | Amperometry | 1 V pH = 4 | 0.85–227740 | 0.02 | 0.523a | N/A | N/A | N/A | [73] |
Globular-like Pt/GO | Amperometry | 1.05 pH = 4 | 0.05–177780 | 0.015 | 0.405a | N/A | N/A | N/A | [73] |
GO-Ag/GCE | LSV, Amperometry | 0.94 V pH = 7 | 10–180 1–1000 | 2.1 0.037 | N/A | N/A | N/A | N/A | [74] |
AgNPs/GO/GCE | LSV | 0.91 V pH = 7.2 | 1–1000 | 0.24 | N/A | N/A | N/A | N/A | [75] |
Ag-Fe3O4-GO | Amperometry | 0.8 V 6 | 0.5–720 720–8150 | 0.17 | 1.966 0.426 | 94%/1 M | N/A | 3.68% | [76] |
Ag-AEfG | Amperometry | 0.85 V pH = 7.4 | 0.05–3000 | 0.023 | 0.2 | 98.7%/300 C | N/A | 2.03% | [77] |
GO-MWCNTs-PMA-Au | DPV | 0.73 V pH = 6 | 2–10000 | 0.67 | 0.484 | 91.2%/4 W | N/A | 4.0% | [79] |
Au/GO-CS/GCE | Amperometry | 0.8 V pH = 5 | 0.9–18.9 | 0.3 | N/A | N/A | N/A | N/A | [80] |
Au-HNTs-GO | Amperometry | 0.8 V pH = 6 | 0.1–6330 6330–61900 | 0.03 | 0.0231 0.0865 | 93%/1 W | 3.5% | N/A | [81] |
PANI/GO | Amperometry | 0.83 V pH = 5 | 2–44000 | 0.5 | 0.117 | N/A | 2.4% | 2.2% | [82] |
Mn3O4 MC/GO/SPE | Amperometry | 0.7 V pH = 7 | 0.1–420 420–1318 | 0.02 | 2.37 1.23 | 97.8%/30 D | N/A | 4.82% | [83] |
MnO2/GO-SPE | DPV | 0.55 V pH = 7.4 | 0.1–1 1–1000 | 0.09 | 1.25 0.005 | N/A | N/A | N/A | [84] |
Pt-GO-PB | LSV | pH = 7 | N/A | 6.6 | 0.0084a | 82.8%/20 C | N/A | N/A | [85] |
Pt-GO-Fe2O3 | LSV | pH = 7 | N/A | 16.58 | 0.0093a | 72.5%/20C | N/A | N/A | [85] |
Fe3O4/GO/COOH/GCE | DPV | pH = 4 | 1–85 90–600 | 0.37 | 0.192a | N/A | N/A | N/A | [86] |
CS/FEPA-GO/GCE | Amperometry | 0.756 V | 0.3–3100 | 0.1 | N/A | 92%/1M | 3.42% | N/A | [87] |
Gem-GO-POM/GCE | DPV | 0.6 V | 5–500 | 0.39 | 0.021a | N/A | N/A | NSD | [88] |
GO/MnNH2TPP/GCE | Amperometry | 0.76 pH = 4 | 10–160 | 2.5 | N/A | N/A | N/A | N/A | [89] |
BC-GO | Amperometry | 1 V pH = 7 | 0.5–4590 | 0.2 | 527.35 | 91%/1M | 2.75% | N/A | [90] |
Material | Method | Detection Conditions | Detection Range(µM) | LOD (µM) | Sensitivity (µAµM−1cm−2) | Long-term Stability | Repeatability | Reproducibility | Ref |
---|---|---|---|---|---|---|---|---|---|
CuNDs/RGO | Amperometry | −0.2 V pH = 2 | 1.25–13000 | 0.4 | 0.214 | 87%/4 W | 4.2% | 3.3% | [93] |
Cu/MWCNT/RGO | SWV | pH = 3 | 0.1–75 | 0.03 | N/A | N/A | N/A | N/A | [94] |
Au-RGO /PDDA/GCE | DPV | 0.93 V pH = 6 | 0.05–8.5 | 0.04 | N/A | 97.8%/2 W | 1.9% | N/A | [96] |
Au-Pd/RGO/ | Amperometry | 0.85 V pH = 7 | 0.05–1000 | 0.02 | N/A | 75%/10 D | 2.67% | N/A | [98] |
RGO/C60/AuNPs/GCE | Amperometry | 0.807 V pH = 5 | 0.05–1175.32 | 0.013 | N/A | 96.2%/2 D | 4.1% | 5.7% | [99] |
Au/Cu-TDPAT/ERGO/GCE | DPV | 0.77 V pH = 7 | 0.001–1000 | 0.006 | N/A | 95%/6 D | N/A | 5% | [100] |
AuNP/RGO/MCNT/GCE | Amperometry | 0.8 V pH = 5 | 0.05–2200 | 0.014 | 1.201 | NSD/30 D | N/A | 4.1% | [101] |
Ag-RGO/GCE | DPV | pH = 7.4 | 0.1–120 | 0.012 | 18.4 | 94.5%/5 W | N/A | 2.38% | [102] |
Ag/TiO2/rGO/GCE | Amperometry | 0.8 V pH = 7.1 | 1–1100 | 0.4 | 0.112 | 90%/3 W | N/A | 5% | [103] |
AgNPs@PPy/rGO | DPV | 0.7 V pH = 7.5 | 0.6–6.6 | 0.021 | N/A | 98.3%/250 C | N/A | 2.2% | [104] |
rGO/AgNPs/poly (PyY)/ | Amperometry | 0.86 V pH = 5 | 0.1–1000 | 0.012 | 13.5 | 65%/3 M | N/A | 1.1% | [105] |
Pt-ErGO/GCE | Amperometry | 0.75 V pH = 5 | 5–100 100–1000 | 0.22 | N/A | 98.98%/12 D | 5.94% | 1.02% | [106] |
fZnO/rFGO/GCE | Amperometry | 0.9 V pH = 7.2 | 10–8000 | 33 | 0.38a | N/A | N/A | N/A | [108] |
Fe2O3-rGO/GCE | DPV | pH = 7 | 0.05–780 | 0.015 | 0.204 | 98.1%/10 D | 2.2% | 1.23% | [109] |
Fe2O3/H-C3N4/RGO | Amperometry | 1 V pH = 7.4 | 0.025–3000 | 0.0186 | 0.0487a | 98%/15 D | 0.74% | 1.65% | [110] |
CuO/H-C3N4/RGO | CV | 0.46 V pH = 8 | 0.2–110 | 0.016 | 0093a | 97.6/100 C | N/A | N/A | [111] |
CuOx/ERGO | Amperometry | 0.9 V pH = 4 | 0.1–100 | 0.072 | N/A | N/A | N/A | N/A | [112] |
Co3O4/RGO | Amperometry | 0.54 V | 1–380 | 0.14 | 29.5 | N/A | N/A | 1.93% | [113] |
Co3O4-RGO/CNTs | Amperometry | 0.8 V pH = 7 | 0.1–8000 | 0.016 | 0.408 | 83.3%/1M | N/A | N/A | [114] |
TiO2/RGO | DPV | 0.85 V pH = 7 | 1–1000 | 0.21 | N/A | N/A | N/A | N/A | [115] |
CeO2/RGO/GCE | Amperometry | 1 V pH = 3.4 | 0.7–385 | 0.18 | N/A | N/A | 3.8% | 4.2% | [116] |
PDDA-RGO | Amperometry | 0.75 V 4.5 | 0.5–2000 | 0.2 | N/A | N/A | 3.9% | 7.3% | [117] |
PDAB/ERGO/GCE | Amperometry | 0.76 V pH = 7.2 | 7–20000 | 0.03 | N/A | 94.8%/30 D | 5.2% | 4.3% | [119] |
Ni(OH)2/RGO | Amperometry | 0.9 V pH = 7 | 0.1–663.6 | 0.07 | 21.93a | 90%/10 D | 2.4% | 4.2% | [121] |
CoHCF/RGO/GCE | DPV | 6.5 | 1–100 | 0.27 | N/A | N/A | 5.5% | 7.3% | [122] |
amFc-RGO/CS/ | Amperometry | 0.7 V pH = 7 | 2.5–50 50–14950 | 0.35 | 0.00035a | 87%/4 W | 6% | 7.7% | [123] |
ERGO/β-CD/CdS/SPCE | Amperometry | 0.78 V pH = 7 | 0.05–447 | 0.021 | 0.00336 | 95.1%/25 D | 2.99% | 2.13% | [124] |
RGO-MoS2/GCE | Amperometry | 0.8 V pH = 7 | 0.2–4800 | 0.17 | 0.46 | N/A | N/A | 1.2% | [125] |
H3PO4·12MoO3/MoS2/ RGO/GCE | Amperometry | 0.87 V | 0.5–8000 | 0.2 | 0.379 | 90%/1 M | 3.5% | 5.1% | [126] |
3D-mp-RGO/POM/GCE | Amperometry | 0.7 V | 0.5–221 221–15221 | 0.2 | N/A | 94%/1 M | 2.5% | 4.7% | [127] |
CRGO/GCE | Amperometry | 0.8 V pH = 5 | 8.9–167 | 1 | 0.0267a | 92.7%/2500 S | 0.726% | 2.29% | [128] |
CRGO/NO3−/GCE | CV | N/A | 10−1.3–102 | 30 | N/A | N/A | N/A | N/A | [129] |
N-RGO/GCE | Amperometry | 0.68 V pH = 7 | 0.5–5000 | 0.2 | 0.229 | 93.8%/1 M | 1.5% | 6.2% | [130] |
RGO/MWCN/GCE | Amperometry | 0.78 V pH = 7 | 0.2–640 | 0.07 | N/A | 96%/4 W | N/A | 5.8% | [131] |
RGO/Acr | Amperometry | 0.985 V pH = 5 | 0.4–3600 | 0.12 | 0.4 | 84%/2 M | N/A | 1.1% | [132] |
POSS/RGO | Amperometry | 0.72 V pH = 7.2 | 0.5–120000 | 0.08 | 0.255 | N/A | N/A | 5% | [118] |
PIX/RGO | N/A | N/A | 0.001–1000 | 0.001 | 19900 s−1M | 98.2%/10 D | N/A | N/A | [133] |
RGO/TEBAC | N/A | N/A | 0.0028–28 mg/L | 1.1 ug/L | N/A | N/A | N/A | N/A | [134] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wang, T.; Li, Z.; Xu, X.; Wang, C.; Duan, Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water—A Review. Sensors 2020, 20, 54. https://doi.org/10.3390/s20010054
Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water—A Review. Sensors. 2020; 20(1):54. https://doi.org/10.3390/s20010054
Chicago/Turabian StyleLi, Daoliang, Tan Wang, Zhen Li, Xianbao Xu, Cong Wang, and Yanqing Duan. 2020. "Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water—A Review" Sensors 20, no. 1: 54. https://doi.org/10.3390/s20010054
APA StyleLi, D., Wang, T., Li, Z., Xu, X., Wang, C., & Duan, Y. (2020). Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water—A Review. Sensors, 20(1), 54. https://doi.org/10.3390/s20010054