A New Method for the Measurement of the Diffusion Coefficient of Adsorbed Vapors in Thin Zeolite Films, Based on Magnetoelastic Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Case (a) p-Xylene/FAU
3.2. Case (b) Propene/LTA
4. Discussion
- Assume the sensor geometry of Figure 6.
- Solve the differential Equation (2) by applying the appropriate boundary and initial conditions for the VOC concentration .
- Extract an expression for the VOC adsorbed mass in the Zeolite film versus time. This expression includes the diffusion constant as a parameter.
- Substitute in Equation (1) to extract a corresponding expression of the sensor resonance frequency versus time.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Mathematics of Diffusion
Appendix B. Connection with the Resonance Frequency
Appendix C. Orthogonality Condition
References
- Ren, L.; Yu, K.; Tan, Y. Applications and advances of magnetoelastic sensors in biomedical engineering: A review. Materials 2019, 12, 1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrami, L.V.R.; Beltrami, M.; Roesch-Ely, M.; Kunst, S.R.; Missell, F.P.; Birriel, E.J.; de FMalfatti, C. Magnetoelastic sensors with hybrid films for bacteria detection in milk. J. Food Eng. 2017, 212, 18–28. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, P.; Li, S.; Zhao, H.; Liu, Y.; Horikawa, S.; Chin, B.A. A highly integratable microfluidic biosensing chip based on magnetoelastic-sensor and planar coil. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar] [CrossRef]
- Chen, I.H.; Horikawa, S.; Bryant, K.; Riggs, R.; Chin, B.A.; Barbaree, J.M. Bacterial assessment of phage magnetoelastic sensors for salmonella enterica typhimurium detection in chicken meat. Food Control 2017, 71, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Samourgkanidis, G.; Nikolaou, P.; Gkovosdis-Louvaris, A.; Sakellis, E.; Blana, I.M.; Topoglidis, E. Hemin-Modified SnO2/Metglas Electrodes for the Simultaneous Electrochemical and Magnetoelastic Sensing of H2O2. Coatings 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Baimpos, T.; Tsukala, V.; Nikolakis, V.; Kouzoudis, D. A modified method for the calculation of the humidity adsorption stresses inside zeolite films using magnetoelastic sensors. Sens. Lett. 2012, 10, 879–885. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 3rd ed.; Pergamon: Oxford, UK, 1986. [Google Scholar]
- Baimpos, T.; Gora, L.; Nikolakis, V.; Kouzoudis, D. Selective detection of hazardous VOC using zeolite/Metglas composite sensors. Sens. Actuators A 2012, 186, 21–31. [Google Scholar] [CrossRef]
- Ju, J.F.; Syu, M.J.; Teng, H.S.; Chou, S.K.; Chang, Y.S. Preparation and identification of β-cyclodextrin polymer thin film for quartz crystal microbalance sensing of benzene, toluene, and p-Xylene. Sens. Actuators B 2008, 132, 319. [Google Scholar] [CrossRef]
- Matsuguchi, M.; Uno, T.; Aoki, T.; Yoshida, M. Chemically modified copolymer coatings for mass-sensitive toluene vapor sensors. Sens. Actuators B 2008, 131, 652. [Google Scholar] [CrossRef]
- Dermody, D.; Crooks, R.; Kim, T. Interactions between Organized, Surface-Confined Monolayers and Vapor-Phase Probe Molecules. 11. Synthesis, Characterization, and Chemical Sensitivity of Self-Assembled Polydiacetylene/Calixn.arene Bilayers. J. Am. Chem. Soc. 1996, 118, 11912. [Google Scholar] [CrossRef]
- Lange, D.; Hagleitner, C.; Hierlemann, A.; Brand, O.; Baltes, H. Complementary metal oxide semiconductor cantilever arrays on a single chip: Mass-sensitive detection of volatile organic compounds. Anal. Chem. 2002, 74, 3084. [Google Scholar] [CrossRef]
- Kozlowski, M.; Diduszko, R.; Olszewska, K.; Wronka, H.; Czerwosz, E. Nanostructural palladium films for sensor applications. Vacuum 2008, 82, 956. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G.; Aversa, P.; Cusano, A.; Cutolo, A.; Giordano, M.; Nicolais, L. Carbon nanotube acoustic and optical sensors for volatile organic compound detection. Nanotechnology 2005, 16, 2536. [Google Scholar] [CrossRef]
- Raso, R.A.; Stoessel, P.R.; Stark, W.J. Physical mixtures of CeO2 and zeolites as regenerable indoor air purifiers: Adsorption and temperature dependent oxidation of VOC. J. Mater. Chem. A 2014, 2, 14089–14098. [Google Scholar] [CrossRef]
- Izadyar, S.; Fatemi, S. Fabrication of X Zeolite Based Modified Nano TiO2 Photocatalytic Paper for Removal of VOC Pollutants under Visible Light. Ind. Eng. Chem. Res. 2013, 52, 10961–10968. [Google Scholar] [CrossRef]
- Biomorgi, J.; Haddou, M.; Oliveros, E.; Maurette, M.T.; Benoit-Marquié, F. Coupling of adsorption on zeolite and V-UV irradiation for the treatment of VOC containing air streams: Effect of TiO2 on the VOC degradation efficiency. J. Adv. Oxid. Technol. 2010, 13, 107–115. [Google Scholar] [CrossRef]
- Nikolajsen, K.; Kiwi-Minsker, L.; Renken, A. Structured fixed-bed adsorber based on zeolite/sintered metal fibre for low concentration VOC removal. Chem. Eng. Res. Des. 2006, 84, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, M.; Barman, T.R.; Alegria, E.C.; da Silva, M.F.C.G.; Liu, C.M.; Kou, H.Z.; Pombeiro, A.J. Cu(ii) complexes of N-rich aroylhydrazone: Magnetism and catalytic activity towards microwave-assisted oxidation of xylenes. Dalton Trans. 2019, 48, 12839–12849. [Google Scholar] [CrossRef]
- Sutradhar, M.; Barman, T.R.; Alegria, E.C.B.A.; Lapa, H.M.; da Silva, M.F.C.G.; Pombeiro, A.J.L. Cd(ii) coordination compounds as heterogeneous catalysts for microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol. New J. Chem. 2020. [Google Scholar] [CrossRef]
- Sutradhar, M.; Alegria, E.C.; Barman, T.R.; Scorcellettia, F.; da Silva, M.F.; Pombeiro, A.J. Microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol with monomeric keto and polymeric enol aroylhydrazone Cu(II) complexes. Mol. Cat. 2017, 439, 224–232. [Google Scholar] [CrossRef]
- Karger, J.; Vasenkov, S. Quantitation of diffusion in zeolite catalysts. Microporous Mesoporous Mater. 2005, 85, 195–206. [Google Scholar] [CrossRef]
- Baimpos, T.; Kouzoudis, D.; Gora, L.; Nikolakis, V. Are zeolite films flexible? Chem. Mater. 2011, 23, 1347–1349. [Google Scholar] [CrossRef]
- Krishna, R. Diffusing uphill with James Clerk Maxwell and Josef Stefan. Rev. Pap. Chem. Eng. Sci. 2019, 195, 851–880. [Google Scholar] [CrossRef]
- Masuda, T.; Hashimoto, H. Measurements of Adsorption on Outer Surface of Zeolite and their Influence on Evaluation of Intracrystalline Diffusivity. In Proceedings of the International Symposium on Zeolites and Microporous Systems, Nagoya, Japan, 22–25 August 1993; Volume 83, p. 225. [Google Scholar]
- Xiao, J. The Diffusion Mechanism of Hydrocarbons in Zeolites. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, April 1990; p. 108. [Google Scholar]
- Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. (Eds.) Handbook of Zeolite Science and Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 31 July 2003; ISBN 9780824740207. [Google Scholar]
- Danny, S. Diffusion in Zeolites: Towards a Microscopic Understanding. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2002. [Google Scholar]
- Möller, A.; Guimaraes, A.P.; Gläser, R.; Staudt, R. Uptake-curves for the determination of diffusion coefficients and sorption equilibria for n-alkanes on zeolites. Microporous Mesoporous Mater. 2009, 125, 23–29. [Google Scholar] [CrossRef]
- Koriabkina, A.O. Diffusion of Alkanes in MFI-type Zeolites. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Brandani, S.; Xu, Z.; Ruthven, D. Transport diffusion and self-diffusion of benzene in NaX zeolite crystals studied by ZLC and tracer ZLC methods. Microporous Mater. 1996, 7, 323–331. [Google Scholar] [CrossRef]
- Gautam, S.; Tripathi, A.K.; Kamble, V.S.; Mitra, S.; Mukhopadhyay, R. Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites: Neutron scattering and FTIR studies. Pramana J. Phys. 2008, 71, 1153–1157. [Google Scholar] [CrossRef]
- Gonsalves, J.A.S.; Portsmouth, R.L.; Alexander, P.; Gladden, L.F. Intercage and Intracage Transport of Aromatics in Zeolites NaY, HY, and USY Studied by 2H NMR. J. Phys. Chem. 1995, 99, 3317–3325. [Google Scholar] [CrossRef]
- Donk, S.V. Adsorption, Diffusion and Reaction Studies of Hydrocarbons on Zeolite Catalysts. Ph.D. Thesis, Utrecht University, Utrecht, Holland, 2002. [Google Scholar]
- Baimpos, T. Composition of zeolite membranes on the surface of magnetoelastic sheets to detect volatile organic substances and determine the effect of drinking on the mechanical properties of the film. Ph.D. Thesis, University of Patras, Patras, Greece, 2012. Available online: http://hdl.handle.net/10889/5506 (accessed on 6 June 2020). (In Greek).
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
VOC | Zeolite Type | Temperature (°C) | Reference | |
---|---|---|---|---|
p-Xylene | ZSM-5 | 0.13 | [25] | |
Benzene | ZSM-5 | 0.025 | [26] | |
Benzene | ZSM-5 | 0.05 | [27] | |
ethylbenzene | ZSM-5 | 0.049 | [27] | |
i-Butane | ZSM-5 | 1 | [28] | |
n-Butane | ZSM-5 | 0.8 | [29] | |
n-Hexane | ZSM-5 | 0.46 | [29] | |
2-Methylpentane | MFI | 1 | [30] | |
n-Hexane | MFI | 45 | [30] | |
methanol | NaX | 10 | [27] | |
Benzene | NaX | 12 | - | [27] |
Benzene | NaX | 12 | [31] | |
propylene | NaY | 1500 | - | [32] |
p-Xylene | NaY | 0.18 | [33] | |
Propene | 5A | 1.1–1.6 | [29] | |
n-Butane | 5A | 0.5–0.7 | [29] | |
n-Octane | USY | 1100 | [22] | |
n-Butane | Modernite | 24,000 | [28] | |
n-Hexane | Pt/HMOR | 0.1 | [34] |
FAU/p-Xylene | ||||
LTA/propene |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouzoudis, D.; Baimpos, T.; Samourgkanidis, G. A New Method for the Measurement of the Diffusion Coefficient of Adsorbed Vapors in Thin Zeolite Films, Based on Magnetoelastic Sensors. Sensors 2020, 20, 3251. https://doi.org/10.3390/s20113251
Kouzoudis D, Baimpos T, Samourgkanidis G. A New Method for the Measurement of the Diffusion Coefficient of Adsorbed Vapors in Thin Zeolite Films, Based on Magnetoelastic Sensors. Sensors. 2020; 20(11):3251. https://doi.org/10.3390/s20113251
Chicago/Turabian StyleKouzoudis, Dimitris, Theodoros Baimpos, and Georgios Samourgkanidis. 2020. "A New Method for the Measurement of the Diffusion Coefficient of Adsorbed Vapors in Thin Zeolite Films, Based on Magnetoelastic Sensors" Sensors 20, no. 11: 3251. https://doi.org/10.3390/s20113251
APA StyleKouzoudis, D., Baimpos, T., & Samourgkanidis, G. (2020). A New Method for the Measurement of the Diffusion Coefficient of Adsorbed Vapors in Thin Zeolite Films, Based on Magnetoelastic Sensors. Sensors, 20(11), 3251. https://doi.org/10.3390/s20113251