Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyards and Samples Description
2.2. Weather Data Acquisition
2.3. Near-Infrared Spectroscopy and Color Data Analysis
2.4. Descriptive Sensory Evaluation
2.5. Statistical Analysis and Machine Learning Modeling
3. Results
3.1. ANOVA Results
3.2. Machine Learning Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lamy, J.L. Business of Winemaking; Board and Bench Publishing: San Francisco, CA, USA, 2015. [Google Scholar]
- Mendes, J.; Pinho, T.M.; Neves dos Santos, F.; Sousa, J.J.; Peres, E.; Boaventura-Cunha, J.; Cunha, M.; Morais, R. Smartphone Applications Targeting Precision Agriculture Practices—A Systematic Review. Agron. Sustain. Dev. 2020, 10, 855. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Diago, M.P.; Fernández-Novales, J.; Tardaguila, J. Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS ONE 2018, 13, e0192037. [Google Scholar] [CrossRef]
- Patil, S.S.; Thorat, S.A. Early detection of grapes diseases using machine learning and IoT. In Proceedings of the 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), Mysore, India, 12–13 August 2016; pp. 1–5. [Google Scholar]
- Treboux, J.; Genoud, D. Improved machine learning methodology for high precision agriculture. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6. [Google Scholar]
- Berenstein, R.; Shahar, O.B.; Shapiro, A.; Edan, Y. Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 2010, 3, 233–243. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Cullen, B.; Tongson, E.; Chauhan, S.S.; Dunshea, F.R. Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality based on Cow Data and Daily Environmental Parameters. Sensors 2020, 20, 2975. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Wang, X.; Torrico, D.D. Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information. In Proceedings of the 21st GiESCO International Meeting, Thessaloniki, Greece, 23–28 June 2019; pp. 23–28. [Google Scholar]
- Holt, H.; Francis, I.; Field, J.; Herderich, M.J.; Iland, P.G. Relationships between berry size, berry phenolic composition and wine quality scores for Cabernet Sauvignon (Vitis vinifera L.) from different pruning treatments and different vintages. Aust. J. Grape Wine Res. 2008, 14, 191–202. [Google Scholar]
- Deloire, A.; Vaudour, E.; Carey, V.A.; Bonnardot, V.; Van Leeuwen, C. Grapevine responses to terroir: A global approach. Oeno One 2005, 39, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Renouf, V.; Trégoat, O.; Roby, J.-P.; Van Leeuwen, C. Soils, rootstocks and grapevine varieties in prestigious Bordeaux vineyards and their impact on yield and quality. J. Int. Sci. Vigne Vin 2010, 44, 127–134. [Google Scholar] [CrossRef]
- Guerra, B.; Steenwerth, K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Jones, G.V.; Goodrich, G.B. Influence of climate variability on wine regions in the western USA and on wine quality in the Napa Valley. Clim. Res. 2008, 35, 241–254. [Google Scholar] [CrossRef]
- Bisson, L.F.; Karpel, J.E. Genetics of yeast impacting wine quality. Annu. Rev. Food Sci. Technol. 2010, 1, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Jolly, N.; Augustyn, O.; Pretorius, I. The effect of non-Saccharomyces yeasts on fermentation and wine quality. S. Afr. J. Enol. Vitic. 2003, 24, 55–62. [Google Scholar] [CrossRef]
- Mateos, J.R.; Pérez-Nevado, F.; Fernández, M.R. Influence of Saccharomyces cerevisiae yeast strain on the major volatile compounds of wine. Enzym. Microb. Technol. 2006, 40, 151–157. [Google Scholar] [CrossRef]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar]
- Tao, Y.; García, J.F.; Sun, D.-W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Kok, D.; Bal, E.; Celik, S. Influences of various canopy management techniques on wine grape quality of V. vinifera L. cv. Kalecik Karasi. Bulg. J. Agric. Sci. 2013, 19, 1247–1252. [Google Scholar]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar]
- Senthilkumar, S.; Vijayakumar, R.; Soorianathasundaram, K.; Devi, D.D. Effect of Pruning Severity on Vegetative, Physiological, Yield and Quality Attributes in Grape (Vitis Vinifera L.)–A Review. Curr. Agric. Res. J. 2015, 3, 42–54. [Google Scholar] [CrossRef]
- Dry, P.R. Canopy management for fruitfulness. Aust. J. Grape Wine Res. 2000, 6, 109–115. [Google Scholar] [CrossRef]
- Guinto, D. Nitrogen fertilisation effects on the quality of selected crops: A review. N.Z. J. Agric. 2016, 46, 121–132. [Google Scholar]
- Bravdo, B. Effect of irrigation and fertilization on fruit and wine quality. In Proceedings of the International Workshop on Advances in Grapevine and Wine Research 754, Venosa, Italy, 15–17 September 2005; pp. 265–274. [Google Scholar]
- Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Martin, P.; Delgado, R.; Gonzalez, M.; Gallegos, J. Colour of ‘Tempranillo’ grapes as affected by different nitrogen and potassium fertilization rates. In Proceedings of the I International Symposium on Grapevine Growing, Commerce and Research 652, Lisbon, Portugal, 30 June–2 July 2003; pp. 153–160. [Google Scholar]
- Delgado, R.; Martín, P.; Del Álamo, M.; González, M.R. Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates. J. Sci. Food Agric. 2004, 84, 623–630. [Google Scholar] [CrossRef]
- Zarrouk, O.; Francisco, R.; Pinto-Marijuan, M.; Brossa, R.; Santos, R.R.; Pinheiro, C.; Costa, J.M.; Lopes, C.; Chaves, M.M. Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine. Agric. Water Manag. 2012, 114, 18–29. [Google Scholar] [CrossRef]
- Ferreyra, R.; Sellés, G.; Ruiz, R.; Sellés, I. Effect of water stress induced at different growth stages on grapevine cv. Chardonnay on production and wine quality. In Proceedings of the IV International Symposium on Irrigation of Horticultural Crops 664, Davis, CA, USA, 1–6 September 2003; pp. 233–236. [Google Scholar]
- Edwards, E.; Clingeleffer, P.R. Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition and wine attributes of C abernet S auvignon grapevines. Aust. J. Grape Wine Res. 2013, 19, 261–276. [Google Scholar] [CrossRef]
- Greven, M.; Green, S.; Neal, S.; Clothier, B.; Neal, M.; Dryden, G.; Davidson, P. Regulated Deficit Irrigation (RDI) to save water and improve Sauvignon Blanc quality? Water Sci. Technol. 2005, 51, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Intrigliolo, D.; Castel, J. Response of Vitis vinifera cv. ‘Tempranillo’to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality. Agric. Water Manag. 2009, 96, 282–292. [Google Scholar] [CrossRef]
- De la Hera, M.; Romero, P.; Gomez-Plaza, E.; Martinez, A. Is partial rootzone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions? Agric. Water Manag. 2007, 87, 261–274. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M. Climate change impacts and adaptive strategies: Lessons from the grapevine. Glob. Chang. Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef] [Green Version]
- Caffarra, A.; Eccel, E. Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Aust. J. Grape Wine Res. 2011, 17, 52–61. [Google Scholar] [CrossRef]
- Anderson, K.; Findlay, C.; Fuentes, S.; Tyerman, S. Viticulture, wine and climate change. Garnaut Clim. Chang. Rev. 2008, 1–16. [Google Scholar]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Santillán, D.; Iglesias, A.; La Jeunesse, I.; Garrote, L.; Sotes, V. Vineyards in transition: A global assessment of the adaptation needs of grape producing regions under climate change. Sci. Total Environ. 2019, 657, 839–852. [Google Scholar] [CrossRef]
- Webb, L.; Whetton, P.; Bhend, J.; Darbyshire, R.; Briggs, P.; Barlow, E. Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat. Clim. Chang. 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Webb, L.; Whetton, P.; Barlow, E. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Fuentes, S.; Sullivan, W.; Tilbrook, J.; Tyerman, S. A novel analysis of grapevine berry tissue demonstrates a variety-dependent correlation between tissue vitality and berry shrivel. Aust. J. Grape Wine Res. 2010, 16, 327–336. [Google Scholar] [CrossRef]
- Bonada, M.; Sadras, V.O.; Fuentes, S. Effect of elevated temperature on the onset and rate of mesocarp cell death in berries of S hiraz and C hardonnay and its relationship with berry shrivel. Aust. J. Grape Wine Res. 2013, 19, 87–94. [Google Scholar] [CrossRef]
- Bondada, B.; Keller, M. Morphoanatomical symptomatology and osmotic behavior of grape berry shrivel. J. Am. Soc. Hortic. Sci. 2012, 137, 20–30. [Google Scholar] [CrossRef]
- Bonada, M.; Sadras, V.; Moran, M.; Fuentes, S. Elevated temperature and water stress accelerate mesocarp cell death and shrivelling, and decouple sensory traits in Shiraz berries. Irrig. Sci. 2013, 31, 1317–1331. [Google Scholar] [CrossRef]
- Gestal, M.; Gómez-Carracedo, M.P.; Andrade, J.M.; Dorado, J.; Fernández, E.; Prada, D.; Pazos, A. Selection of variables by genetic algorithms to classify apple beverages by artificial neural networks. Appl. Artif. Intell. 2005, 19, 181–198. [Google Scholar] [CrossRef]
- Fuentes, S.; Tongson, E.; Torrico, D.D.; Gonzalez Viejo, C. Modeling Pinot Noir Aroma Profiles Based on Weather and Water Management Information Using Machine Learning Algorithms: A Vertical Vintage Analysis Using Artificial Intelligence. Foods 2020, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Howell, K.; Krstic, M.; Herderich, M.; Barlow, E.W.R.; Fuentes, S. Environmental factors and seasonality affect the concentration of rotundone in Vitis vinifera L. cv. Shiraz wine. PLoS ONE 2015, 10, e0133137. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.J.; Fuentes, S.; Barlow, E.W. Partial rootzone drying and deficit irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric grapevines. Funct. Plant Biol. 2010, 37, 128–138. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Ortega-Farias, S.; Fuentes, S. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F.R. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms. J. Sci. Food Agric. 2018, 98, 618–627. [Google Scholar] [CrossRef]
- ISO. Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors; ISO 8586-1:1993E; International Organization for Standardization: Geneva, Switzerland, 1993; p. 15. [Google Scholar]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers. J. Food Sci. 2018, 83, 1381–1388. [Google Scholar] [CrossRef]
- Piggott, J. Alcoholic Beverages: Sensory Evaluation and Consumer Research; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Kemp, S.E.; Hort, J.; Hollowood, T. Descriptive Analysis in Sensory Evaluation; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Fuentes, S.; Gonzalez Viejo, C.; Torrico, D.; Dunshea, F. Development of a biosensory computer application to assess physiological and emotional responses from sensory panelists. Sensors 2018, 18, 2958. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Development of Artificial Neural Network Models to Assess Beer Acceptability Based on Sensory Properties Using a Robotic Pourer: A Comparative Model Approach to Achieve an Artificial Intelligence System. Beverages 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Smart, R.; Wang, H.; Dambergs, B.; Sparrow, A.; Qian, M.C. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chem. 2015, 173, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Smart, R.E.; Dambergs, R.G.; Sparrow, A.M.; Wells, R.B.; Wang, H.; Qian, M.C. Pinot Noir wine composition from different vine vigour zones classified by remote imaging technology. Food Chem. 2014, 153, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, phenolics, and color of Cabernet franc, Merlot, and Pinot noir wines from British Columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Girard, B.; Yuksel, D.; Cliff, M.; Delaquis, P.; Reynolds, A. Vinification effects on the sensory, colour and GC profiles of Pinot noir wines from British Columbia. Food Res. Int. 2001, 34, 483–499. [Google Scholar] [CrossRef]
- Markovic, I.; Ilic, J.; Markovic, D.; Simonovic, V.; Kosanic, N. Color measurement of food products using CIE L* a* b* and RGB color space. J. Hyg. Eng. Des. 2013, 4, 50–53. [Google Scholar]
- Gonzalez Viejo, C.; Fuentes, S.; Li, G.; Collmann, R.; Condé, B.; Torrico, D. Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER. Food Res. Int. 2016, 89, 504–513. [Google Scholar] [CrossRef]
- Matějů, M.; Dordevic, D.; Běhalová, H.; Javůrková, Z.; Pospiech, M.; Tremlová, B.; Kulawik, P. Correlation between olive oil color and present pigments: Case study with color methods. Maso Int. J. Food Sci. Technol. 2017, 1, 69–74. [Google Scholar]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. Detection and quantification of adulterations in aged wine using RGB digital images combined with multivariate chemometric techniques. Food Chem. X 2019, 3, 100046. [Google Scholar] [CrossRef]
- Piqueras-Fiszman, B.; Alcaide, J.; Roura, E.; Spence, C. Is it the plate or is it the food? Assessing the influence of the color (black or white) and shape of the plate on the perception of the food placed on it. Food Qual. Prefer. 2012, 24, 205–208. [Google Scholar] [CrossRef]
- Piqueras-Fiszman, B.; Velasco, C.; Spence, C. Exploring implicit and explicit crossmodal colour–flavour correspondences in product packaging. Food Qual. Prefer. 2012, 25, 148–155. [Google Scholar] [CrossRef]
- Lick, E.; König, B.; Kpossa, M.R.; Buller, V. Sensory expectations generated by colours of red wine labels. J. Retail. Consum. Serv. 2017, 37, 146–158. [Google Scholar] [CrossRef]
- Gunaratne, T.M.; Gonzalez Viejo, C.; Gunaratne, N.M.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Chocolate Quality Assessment Based on Chemical Fingerprinting Using Near Infra-red and Machine Learning Modeling. Foods 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, S.; Chacon, G.; Torrico, D.D.; Zarate, A.; Gonzalez Viejo, C. Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application. Sensors 2019, 19, 3054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viejo, C.G.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F.R. Robotics and computer vision techniques combined with non-invasive consumer biometrics to assess quality traits from beer foamability using machine learning: A potential for artificial intelligence applications. Food Control 2018, 92, 72–79. [Google Scholar] [CrossRef]
- Condé, B.C.; Fuentes, S.; Caron, M.; Xiao, D.; Collmann, R.; Howell, K.S. Development of a robotic and computer vision method to assess foam quality in sparkling wines. Food Control 2017, 71, 383–392. [Google Scholar] [CrossRef]
- Trajkovic, S. Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 316–323. [Google Scholar] [CrossRef]
- Almorox, J.; Quej, V.H.; Martí, P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. J. Hydrol. 2015, 528, 514–522. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B: Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Rateni, G.; Dario, P.; Cavallo, F. Smartphone-based food diagnostic technologies: A review. Sensors 2017, 17, 1453. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.D.; Dunshea, F.R. Non-contact heart rate and blood pressure estimations from video analysis and machine learning modelling applied to food sensory responses: A case study for chocolate. Sensors 2018, 18, 1802. [Google Scholar] [CrossRef] [Green Version]
Wine Vintage | Label/Abbreviation | Alcohol Content | pH |
---|---|---|---|
2008 | W08 | 13.7% | 3.7 |
2009 | W09 | 13.9% | 3.6 |
2010 | W10 | 13.9% | 3.7 |
2011 | W11 | 13.7% | 3.6 |
2012 | W12 | 14.2% | 3.6 |
2013 | W13 | 13.6% | 3.6 |
2014 | W14 | 13.6% | 3.8 |
2015 | W15 | 14.2% | 3.7 |
2016 | W16 | 13.7% | 3.5 |
Descriptor | Anchors |
---|---|
Color intensity | Light–Dark |
Red fruits aroma | Absent–Intense |
Black fruits aroma | Absent–Intense |
Yeast aroma | Absent–Intense |
Spicy aroma | Absent–Intense |
Floral aroma | Absent–Intense |
Oak aroma | Absent–Intense |
Sweet aroma | Absent–Intense |
Sweet taste | Absent–Intense |
Acidic taste | Absent–Intense |
Bitter taste | Absent–Intense |
Oak flavor | Absent–Intense |
Herbs flavor | Absent–Intense |
Red fruits flavor | Absent–Intense |
Black fruits flavor | Absent–Intense |
Spicy flavor | Absent–Intense |
Body | Light–Full |
Astringency | Absent–Intense |
Warming mouthfeel | Absent–Intense |
Sample | L | SE | a | SE | b | SE | R | SE | G | SE | B | SE | C | SE | M | SE | Y | SE | K | SE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W08 | 38.35b | 0.60 | 31.98e | 0.45 | 20.57f | 0.20 | 144.33b | 2.03 | 67.33b | 1.20 | 59.00a | 1.53 | 0.30b | 0.01 | 0.80g | <0.01 | 0.75f | 0.01 | 0.25d | 0.01 |
W09 | 44.38c | 0.67 | 28.71cd | 0.30 | 17.29e | 0.06 | 155.83c | 2.13 | 85.00c | 1.32 | 78.17b | 1.76 | 0.30b | 0.01 | 0.72e | <0.01 | 0.65e | 0.01 | 0.18c | 0.01 |
W10 | 50.41e | 0.79 | 25.45b | 0.17 | 14.01d | 0.17 | 167.33d | 2.33 | 102.67de | 1.67 | 97.33cd | 2.33 | 0.30b | 0.01 | 0.65c | 0.01 | 0.56d | 0.01 | 0.10b | 0.01 |
W11 | 59.23g | 0.62 | 18.11a | 0.09 | 12.17c | 0.29 | 180.33e | 1.45 | 130.67g | 1.76 | 122.33f | 1.86 | 0.29ab | <0.01 | 0.51a | 0.01 | 0.47b | 0.01 | 0.03a | 0.01 |
W12 | 51.98e | 0.38 | 26.44b | 0.46 | 13.31cd | 0.47 | 173.00d | 0.58 | 106.00e | 1.16 | 102.33de | 1.45 | 0.29ab | <0.01 | 0.65c | <0.01 | 0.53c | 0.01 | 0.08b | <0.01 |
W13 | 50.40e | 0.73 | 29.65d | 0.74 | 14.43d | 0.88 | 173.33d | 2.91 | 99.00d | 1.52 | 97.00c | 2.08 | 0.28a | 0.01 | 0.68d | 0.01 | 0.56d | 0.02 | 0.09b | 0.01 |
W14 | 32.05a | 0.69 | 37.13g | 1.26 | 12.46c | 0.47 | 131.00a | 3.22 | 46.67a | 1.45 | 58.00a | 1.53 | 0.33c | 0.01 | 0.89h | 0.01 | 0.68e | 0.01 | 0.32e | 0.02 |
W15 | 55.55f | 0.57 | 27.06bc | 0.50 | 7.03b | 0.21 | 181.00e | 2.41 | 115.00f | 1.02 | 121.89f | 1.31 | 0.28a | 0.01 | 0.62b | <0.01 | 0.42a | 0.01 | 0.03a | <0.01 |
W16 | 47.97d | 0.68 | 35.11f | 0.67 | 5.63a | 0.39 | 170.33d | 2.67 | 89.00c | 1.53 | 105.67e | 1.76 | 0.30b | 0.01 | 0.75f | 0.01 | 0.46b | 0.01 | 0.07b | 0.01 |
Stage | Samples | Observations (Samples × Targets) | R | Performance (MSE) | Slope |
---|---|---|---|---|---|
Model 1 (Near-infrared inputs; Sensory targets) | |||||
Training | 69 | 1311 | 0.96 | 0.03 | 0.90 |
Validation | 15 | 285 | 0.82 | 0.16 | 0.68 |
Testing | 15 | 285 | 0.82 | 0.13 | 0.83 |
Overall | 99 | 1881 | 0.92 | - | 0.85 |
Model 2 (Weather inputs; Sensory targets) | |||||
Training | 46 | 874 | 0.98 | 0.01 | 0.96 |
Validation | 10 | 190 | 0.96 | 0.04 | 0.85 |
Testing | 10 | 190 | 0.96 | 0.04 | 0.85 |
Overall | 66 | 1254 | 0.98 | - | 0.93 |
Model 3 (Weather inputs; Color targets) | |||||
Training | 46 | 460 | 0.99 | <0.01 | 0.98 |
Testing | 20 | 200 | 0.97 | 0.02 | 0.98 |
Overall | 66 | 660 | 0.99 | - | 0.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, S.; Torrico, D.D.; Tongson, E.; Gonzalez Viejo, C. Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data. Sensors 2020, 20, 3618. https://doi.org/10.3390/s20133618
Fuentes S, Torrico DD, Tongson E, Gonzalez Viejo C. Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data. Sensors. 2020; 20(13):3618. https://doi.org/10.3390/s20133618
Chicago/Turabian StyleFuentes, Sigfredo, Damir D. Torrico, Eden Tongson, and Claudia Gonzalez Viejo. 2020. "Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data" Sensors 20, no. 13: 3618. https://doi.org/10.3390/s20133618
APA StyleFuentes, S., Torrico, D. D., Tongson, E., & Gonzalez Viejo, C. (2020). Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data. Sensors, 20(13), 3618. https://doi.org/10.3390/s20133618