Criterion Validity of Catapult ClearSky T6 Local Positioning System for Measuring Inter-Unit Distance
Abstract
:1. Introduction
1.1. Player Tracking Technology
1.2. Ultra-Wideband
1.3. Tactical Variables
2. Materials and Methods
2.1. Participants
2.2. Experimental Overview
2.3. Data Collection
2.3.1. Circuit
- Self-paced walk (9 m).
- Self-paced jog (9 m).
- Self-paced jump.
- Self-paced run (13 m).
- Maximal acceleration (9 m).
- Three self-paced 45° changes of direction (13 m).
- Self-paced side shuffle (15.4 m).
- Self-paced walk (13m)
2.3.2. Catapult ClearSky T6 Setup
2.3.3. Vicon Setup
- Catapult Unit (receiver tag).
- Right Shoulder.
- Left Shoulder.
- Left Front Hip.
- Right Front Hip.
- Right Back Hip.
- Left Back Hip
2.4. Data Processing
2.5. Statistical Analysis
- 0–5 m
- 5–10 m
- 10–15 m
- 15–20 m
- >20 m
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scott, M.T.; Scott, T.J.; Kelly, V.G. The Validity and reliability of global positioning systems in team sport: A brief review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using gps devices in sport. Int. J. Sports Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Varley, M.C.; Fairweather, I.H.; Aughey, R.J. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef]
- Vickery, W.M.; Dascombe, B.J.; Baker, J.D.; Higham, D.G.; Spratford, W.A.; Duffield, R. Accuracy and reliability of GPS devices for measurement of sports-specific movement patterns related to cricket, tennis, and field-based team sports. J. Strength Cond. Res. 2014, 28, 1697–1705. [Google Scholar] [CrossRef]
- Siegle, M.; Stevens, T.; Lames, M. Design of an accuracy study for position detection in football. J. Sports Sci. 2013, 31, 166–172. [Google Scholar] [CrossRef]
- Bourbousson, J.; Sève, C.; McGarry, T. Space–time coordination dynamics in basketball: Part 1. Intra-and inter-couplings among player dyads. J. Sports Sci. 2010, 28, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Figueira, B.; Gonçalves, B.; Folgado, H.; Masiulis, N.; Calleja-González, J.; Sampaio, J. Accuracy of a basketball indoor tracking system based on standard bluetooth low energy channels (NBN23®). Sensors 2018, 18, 1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luteberget, L.S.; Spencer, M.; Gilgien, M. Validity of the catapult clearsky t6 local positioning system for team sports specific drills, in indoor conditions. Front. Physiol. 2018, 9, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mautz, R. Indoor Positioning Technologies; Habilitation Swiss Federal Institute of Technology: Zurich, Switzerland, 2012. [Google Scholar]
- Rovňáková, J.; Švecová, M.; Kocur, D.; Nguyen, T.T.; Sachs, J. Signal Processing for Through Wall Moving Target Tracking by M-sequence UWB Radar. In Proceedings of the 18th International Conference Radioelektronika, Prague, Czech Republic, 1 January 2008. [Google Scholar]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef]
- Serpiello, F.G.; Hopkins, W.; Barnes, S.; Tavrou, J.; Duthie, G.; Aughey, R.; Ball, K. Validity of a Ultra-wideband local positioning system to measure locomotion in indoor sports. J. Sport Sci. 2017, 36, 1727–1733. [Google Scholar] [CrossRef] [Green Version]
- Bastida-Castillo, A.; Gómez-Carmona, C.D.; De La Cruz Sánchez, E.; Pino-Ortega, J. Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. Eur. J. Sport Sci. 2019, 19, 1157–1165. [Google Scholar] [CrossRef]
- Bastida-Castillo, A.; Gómez-Carmona, C.D.; la Cruz-Sánchez, D.; Reche-Royo, X.; Ibáñez, S.J.; Pino-Ortega, J. Accuracy and inter-unit reliability of ultra-wide-band tracking system in indoor exercise. Appl. Sci. 2019, 9, 939. [Google Scholar] [CrossRef] [Green Version]
- Luteberget, L.S.; Spencer, M. High-intensity events in international women’s team handball matches. Int. J. Sports Physiol. Perform. 2017, 12, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Guerrero, J.; Jones, B.; Fernández-Valdés, B.; Moras, G.; Reche, X.; Sampaio, J. Physical demands of elite basketball during an official U18 international tournament. J. Sports Sci. 2019, 37, 2530–2537. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.S.; Kennedy, C.R. Tracking in-match movement demands using local positioning system in world-class men’s ice hockey. J. Strength Cond. Res. 2020, 34, 639–646. [Google Scholar] [CrossRef]
- International Federation of Association Football (FIFA). EPTS Performance Test Report; International Federation of Association Football: Zurich, Switzerland, 2020. [Google Scholar]
- Bradley, P.S.; Ade, J.D. Are current physical match performance metrics in elite soccer fit for purpose or is the adoption of an integrated approach needed? Int. J. Sports Physiol. Perform. 2018, 13, 656–664. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Horton, M. Spatio-temporal analysis of team sports. ACM Comput. Surv. 2016, 50, 22. [Google Scholar] [CrossRef] [Green Version]
- Araújo, D.; Davids, K. Team synergies in sport: theory and measures. Front. Psychol. 2016, 7, 1449. [Google Scholar] [CrossRef] [Green Version]
- Folgado, H.; Duarte, R.; Fernandes, O.; Sampaio, J. Competing with lower level opponents decreases intra-team movement synchronization and time-motion demands during pre-season soccer matches. PLoS ONE 2014, 9, 97145. [Google Scholar] [CrossRef]
- Folgado, H.; Duarte, R.; Marques, P.; Gonçalves, B.; Sampaio, J. Exploring how movement synchronization is related to match outcome in elite professional football. Sci. Med. Footb. 2018, 2, 101–107. [Google Scholar] [CrossRef]
- Frencken, W.; Lemmink, K.; Delleman, N.; Visscher, C. Oscillations of centroid position and surface area of soccer teams in small-sided games. Eur. J. Sport Sci. 2011, 11, 215–223. [Google Scholar] [CrossRef]
- Gonçalves, B.; Marcelino, R.; Torres-Ronda, L.; Torrents, C.; Sampaio, J. Effects of emphasising opposition and cooperation on collective movement behaviour during football small-sided games. J. Sports Sci. 2016, 34, 1346–1354. [Google Scholar] [CrossRef] [PubMed]
- Bourbousson, J.; Sève, C.; McGarry, T. Space–time coordination dynamics in basketball: Part 2. The interaction between the two teams. J. Sports Sci. 2010, 28, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.; Button, C.; Robins, M.; Dutt-Mazumder, A.; Kennedy, G. Analysing team coordination patterns from player movement trajectories in soccer: Methodological considerations. Int. J. Perform. Anal. Sport 2012, 12, 398–424. [Google Scholar] [CrossRef]
- Memmert, D.; Lemmink, K.A.P.M.; Sampaio, J. Current approaches to tactical performance analyses in soccer using position data. Sports Med. 2017, 47, 1–10. [Google Scholar] [CrossRef]
- Rein, R.; Memmert, D. Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. SpringerPlus 2016, 5, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, J.P.; Spencer, B.; Mara, J.K.; Robertson, S. Collective team behaviour of Australian Rules football during phases of match play. J. Sports Sci. 2018, 37, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeting, A.J.; Aughey, R.J.; Cormack, S.J.; Morgan, S. Discovering frequently recurring movement sequences in team-sport athlete spatiotemporal data. J. Sports Sci. 2017, 35, 2439–2445. [Google Scholar] [CrossRef] [Green Version]
- Rico-González, M.; Los Arcos, A.; Rojas-Valverde, D.; Clemente, F.M.; Pino-Ortega, J. A survey to assess the quality of the data obtained by radio-frequency technologies and microelectromechanical systems to measure external workload and collective behavior variables in team sports. Sensors 2020, 20, 2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthukrishnan, K.K. Multimodal Localisation: Analysis, Algorithms and Experimental Evaluation; University of Twente: Enschede, The Netherlands, 2009. [Google Scholar]
Distance Band | N. Frames | RMSE (m) | Mean Bias (m) | Percentage of Variance Accounted for (%) |
---|---|---|---|---|
0–5 m | 2731 | 0.18 ± 0.08 | 0.14 ± 0.10 | 94.34 ± 0.09 |
5–10 m | 3232 | 0.20 ± 0.07 | 0.14 ± 0.10 | 98.64 ± 0.01 |
10–15 m | 2643 | 0.20 ± 0.07 | 0.07 ± 0.06 | 98.32 ± 0.01 |
15–20 m | 1684 | 0.21 ± 0.06 | 0.03 ± 0.05 | 97.88 ± 0.03 |
>20 m | 210 | 0.22 ± 0.05 | 0.06 ± 0.08 | 74.37 ± 0.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodder, R.W.; Ball, K.A.; Serpiello, F.R. Criterion Validity of Catapult ClearSky T6 Local Positioning System for Measuring Inter-Unit Distance. Sensors 2020, 20, 3693. https://doi.org/10.3390/s20133693
Hodder RW, Ball KA, Serpiello FR. Criterion Validity of Catapult ClearSky T6 Local Positioning System for Measuring Inter-Unit Distance. Sensors. 2020; 20(13):3693. https://doi.org/10.3390/s20133693
Chicago/Turabian StyleHodder, Ryan W., Kevin A. Ball, and Fabio R. Serpiello. 2020. "Criterion Validity of Catapult ClearSky T6 Local Positioning System for Measuring Inter-Unit Distance" Sensors 20, no. 13: 3693. https://doi.org/10.3390/s20133693
APA StyleHodder, R. W., Ball, K. A., & Serpiello, F. R. (2020). Criterion Validity of Catapult ClearSky T6 Local Positioning System for Measuring Inter-Unit Distance. Sensors, 20(13), 3693. https://doi.org/10.3390/s20133693